Author: Lars Kadison
Publisher: Birkhäuser Boston
ISBN: 0817639004
Category : Mathematics
Languages : en
Pages : 228
Book Description
The techniques and concepts of modern algebra are introduced for their natural role in the study of projectile geometry; groups appear as automorphism groups of configurations, division rings appear in the study of Desargues' theorem and the study of the independence of the seven axioms given for projectile geometry.
Projective Geometry and Modern Algebra
Author: Lars Kadison
Publisher: Birkhäuser Boston
ISBN: 0817639004
Category : Mathematics
Languages : en
Pages : 228
Book Description
The techniques and concepts of modern algebra are introduced for their natural role in the study of projectile geometry; groups appear as automorphism groups of configurations, division rings appear in the study of Desargues' theorem and the study of the independence of the seven axioms given for projectile geometry.
Publisher: Birkhäuser Boston
ISBN: 0817639004
Category : Mathematics
Languages : en
Pages : 228
Book Description
The techniques and concepts of modern algebra are introduced for their natural role in the study of projectile geometry; groups appear as automorphism groups of configurations, division rings appear in the study of Desargues' theorem and the study of the independence of the seven axioms given for projectile geometry.
Modern Projective Geometry
Author: Claude-Alain Faure
Publisher: Springer Science & Business Media
ISBN: 9401595909
Category : Mathematics
Languages : en
Pages : 370
Book Description
This monograph develops projective geometries and provides a systematic treatment of morphisms. It introduces a new fundamental theorem and its applications describing morphisms of projective geometries in homogeneous coordinates by semilinear maps. Other topics treated include three equivalent definitions of projective geometries and their correspondence with certain lattices; quotients of projective geometries and isomorphism theorems; and recent results in dimension theory.
Publisher: Springer Science & Business Media
ISBN: 9401595909
Category : Mathematics
Languages : en
Pages : 370
Book Description
This monograph develops projective geometries and provides a systematic treatment of morphisms. It introduces a new fundamental theorem and its applications describing morphisms of projective geometries in homogeneous coordinates by semilinear maps. Other topics treated include three equivalent definitions of projective geometries and their correspondence with certain lattices; quotients of projective geometries and isomorphism theorems; and recent results in dimension theory.
Projective Geometry
Author: Elisabetta Fortuna
Publisher: Springer
ISBN: 3319428241
Category : Mathematics
Languages : en
Pages : 275
Book Description
This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of elementary Linear Algebra.
Publisher: Springer
ISBN: 3319428241
Category : Mathematics
Languages : en
Pages : 275
Book Description
This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of elementary Linear Algebra.
Perspectives on Projective Geometry
Author: Jürgen Richter-Gebert
Publisher: Springer Science & Business Media
ISBN: 3642172865
Category : Mathematics
Languages : en
Pages : 573
Book Description
Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.
Publisher: Springer Science & Business Media
ISBN: 3642172865
Category : Mathematics
Languages : en
Pages : 573
Book Description
Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.
The Four Pillars of Geometry
Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
A Modern View of Geometry
Author: Leonard M. Blumenthal
Publisher: Courier Dover Publications
ISBN: 0486821137
Category : Mathematics
Languages : en
Pages : 209
Book Description
Elegant exposition of postulation geometry of planes offers rigorous, lucid treatment of coordination of affine and projective planes, set theory, propositional calculus, affine planes with Desargues and Pappus properties, more. 1961 edition.
Publisher: Courier Dover Publications
ISBN: 0486821137
Category : Mathematics
Languages : en
Pages : 209
Book Description
Elegant exposition of postulation geometry of planes offers rigorous, lucid treatment of coordination of affine and projective planes, set theory, propositional calculus, affine planes with Desargues and Pappus properties, more. 1961 edition.
Lectures on Curves, Surfaces and Projective Varieties
Author: Mauro Beltrametti
Publisher: European Mathematical Society
ISBN: 9783037190647
Category : Mathematics
Languages : en
Pages : 512
Book Description
This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Publisher: European Mathematical Society
ISBN: 9783037190647
Category : Mathematics
Languages : en
Pages : 512
Book Description
This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Symmetry and Pattern in Projective Geometry
Author: Eric Lord
Publisher: Springer Science & Business Media
ISBN: 144714631X
Category : Mathematics
Languages : en
Pages : 190
Book Description
Symmetry and Pattern in Projective Geometry is a self-contained study of projective geometry which compares and contrasts the analytic and axiomatic methods. The analytic approach is based on homogeneous coordinates, and brief introductions to Plücker coordinates and Grassmann coordinates are presented. This book looks carefully at linear, quadratic, cubic and quartic figures in two, three and higher dimensions. It deals at length with the extensions and consequences of basic theorems such as those of Pappus and Desargues. The emphasis throughout is on special configurations that have particularly interesting symmetry properties. The intricate and novel ideas of ‘Donald’ Coxeter, who is considered one of the great geometers of the twentieth century, are also discussed throughout the text. The book concludes with a useful analysis of finite geometries and a description of some of the remarkable configurations discovered by Coxeter. This book will be appreciated by mathematics students and those wishing to learn more about the subject of geometry. It makes accessible subjects and theorems which are often considered quite complicated and presents them in an easy-to-read and enjoyable manner.
Publisher: Springer Science & Business Media
ISBN: 144714631X
Category : Mathematics
Languages : en
Pages : 190
Book Description
Symmetry and Pattern in Projective Geometry is a self-contained study of projective geometry which compares and contrasts the analytic and axiomatic methods. The analytic approach is based on homogeneous coordinates, and brief introductions to Plücker coordinates and Grassmann coordinates are presented. This book looks carefully at linear, quadratic, cubic and quartic figures in two, three and higher dimensions. It deals at length with the extensions and consequences of basic theorems such as those of Pappus and Desargues. The emphasis throughout is on special configurations that have particularly interesting symmetry properties. The intricate and novel ideas of ‘Donald’ Coxeter, who is considered one of the great geometers of the twentieth century, are also discussed throughout the text. The book concludes with a useful analysis of finite geometries and a description of some of the remarkable configurations discovered by Coxeter. This book will be appreciated by mathematics students and those wishing to learn more about the subject of geometry. It makes accessible subjects and theorems which are often considered quite complicated and presents them in an easy-to-read and enjoyable manner.
Algebraic Geometry
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511
Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511
Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Dynamics, Statistics and Projective Geometry of Galois Fields
Author: V. I. Arnold
Publisher: Cambridge University Press
ISBN: 1139493442
Category : Mathematics
Languages : en
Pages : 91
Book Description
V. I. Arnold reveals some unexpected connections between such apparently unrelated theories as Galois fields, dynamical systems, ergodic theory, statistics, chaos and the geometry of projective structures on finite sets. The author blends experimental results with examples and geometrical explorations to make these findings accessible to a broad range of mathematicians, from undergraduate students to experienced researchers.
Publisher: Cambridge University Press
ISBN: 1139493442
Category : Mathematics
Languages : en
Pages : 91
Book Description
V. I. Arnold reveals some unexpected connections between such apparently unrelated theories as Galois fields, dynamical systems, ergodic theory, statistics, chaos and the geometry of projective structures on finite sets. The author blends experimental results with examples and geometrical explorations to make these findings accessible to a broad range of mathematicians, from undergraduate students to experienced researchers.