Process Tensor Networks for Non-Markovian Open Quantum Systems

Process Tensor Networks for Non-Markovian Open Quantum Systems PDF Author: Gerald E. Fux
Publisher:
ISBN:
Category : Many-body problem
Languages : en
Pages : 0

Get Book Here

Book Description

Process Tensor Networks for Non-Markovian Open Quantum Systems

Process Tensor Networks for Non-Markovian Open Quantum Systems PDF Author: Gerald E. Fux
Publisher:
ISBN:
Category : Many-body problem
Languages : en
Pages : 0

Get Book Here

Book Description


Modelling Non-Markovian Quantum Systems Using Tensor Networks

Modelling Non-Markovian Quantum Systems Using Tensor Networks PDF Author: Aidan Strathearn
Publisher: Springer Nature
ISBN: 3030549755
Category : Science
Languages : en
Pages : 113

Get Book Here

Book Description
This thesis presents a revolutionary technique for modelling the dynamics of a quantum system that is strongly coupled to its immediate environment. This is a challenging but timely problem. In particular it is relevant for modelling decoherence in devices such as quantum information processors, and how quantum information moves between spatially separated parts of a quantum system. The key feature of this work is a novel way to represent the dynamics of general open quantum systems as tensor networks, a result which has connections with the Feynman operator calculus and process tensor approaches to quantum mechanics. The tensor network methodology developed here has proven to be extremely powerful: For many situations it may be the most efficient way of calculating open quantum dynamics. This work is abounds with new ideas and invention, and is likely to have a very significant impact on future generations of physicists.

Tensor Network Contractions

Tensor Network Contractions PDF Author: Shi-Ju Ran
Publisher: Springer Nature
ISBN: 3030344894
Category : Science
Languages : en
Pages : 160

Get Book Here

Book Description
Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.

Tensor Network Simulations of Open Quantum Systems

Tensor Network Simulations of Open Quantum Systems PDF Author: Dainius Kilda
Publisher:
ISBN:
Category : Quantum electrodynamics
Languages : en
Pages : 211

Get Book Here

Book Description


Introduction to Tensor Network Methods

Introduction to Tensor Network Methods PDF Author: Simone Montangero
Publisher: Springer
ISBN: 3030014096
Category : Science
Languages : en
Pages : 172

Get Book Here

Book Description
This volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field.

Tensor Network Contractions

Tensor Network Contractions PDF Author: Maciej Lewenstein
Publisher:
ISBN: 9781013273629
Category : Science
Languages : en
Pages : 158

Get Book Here

Book Description
Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems

Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems PDF Author: Laurens Vanderstraeten
Publisher: Springer
ISBN: 3319641913
Category : Science
Languages : en
Pages : 229

Get Book Here

Book Description
This thesis develops new techniques for simulating the low-energy behaviour of quantum spin systems in one and two dimensions. Combining these developments, it subsequently uses the formalism of tensor network states to derive an effective particle description for one- and two-dimensional spin systems that exhibit strong quantum correlations. These techniques arise from the combination of two themes in many-particle physics: (i) the concept of quasiparticles as the effective low-energy degrees of freedom in a condensed-matter system, and (ii) entanglement as the characteristic feature for describing quantum phases of matter. Whereas the former gave rise to the use of effective field theories for understanding many-particle systems, the latter led to the development of tensor network states as a description of the entanglement distribution in quantum low-energy states.

Open Quantum Systems

Open Quantum Systems PDF Author: Ángel Rivas
Publisher: Springer Science & Business Media
ISBN: 3642233546
Category : Science
Languages : en
Pages : 103

Get Book Here

Book Description
In this volume the fundamental theory of open quantum systems is revised in the light of modern developments in the field. A unified approach to the quantum evolution of open systems is presented by merging concepts and methods traditionally employed by different communities, such as quantum optics, condensed matter, chemical physics and mathematical physics. The mathematical structure and the general properties of the dynamical maps underlying open system dynamics are explained in detail. The microscopic derivation of dynamical equations, including both Markovian and non-Markovian evolutions, is also discussed. Because of the step-by-step explanations, this work is a useful reference to novices in this field. However, experienced researches can also benefit from the presentation of recent results.

Open Quantum Systems Far from Equilibrium

Open Quantum Systems Far from Equilibrium PDF Author: Gernot Schaller
Publisher: Springer
ISBN: 331903877X
Category : Science
Languages : en
Pages : 215

Get Book Here

Book Description
This monograph provides graduate students and also professional researchers aiming to understand the dynamics of open quantum systems with a valuable and self-contained toolbox. Special focus is laid on the link between microscopic models and the resulting open-system dynamics. This includes how to derive the celebrated Lindblad master equation without applying the rotating wave approximation. As typical representatives for non-equilibrium configurations it treats systems coupled to multiple reservoirs (including the description of quantum transport), driven systems and feedback-controlled quantum systems. Each method is illustrated with easy-to-follow examples from recent research. Exercises and short summaries at the end of every chapter enable the reader to approach the frontiers of current research quickly and make the book useful for quick reference.

Simulation with Entropy Thermodynamics

Simulation with Entropy Thermodynamics PDF Author: Christophe Goupil
Publisher: MDPI
ISBN: 3036501142
Category : Science
Languages : en
Pages : 222

Get Book Here

Book Description
Beyond its identification with the second law of thermodynamics, entropy is a formidable tool for describing systems in their relationship with their environment. This book proposes to go through some of these situations where the formulation of entropy, and more precisely, the production of entropy in out-of-equilibrium processes, makes it possible to forge an approach to the behavior of very different systems. Whether for dimensioning structures; influencing parameter variability; or optimizing power, efficiency, or waste heat reduction, simulations based on entropy production offer a tool that is both compact and reliable. In the case of systems marked by complexity, it appears to be the only way. In that sense, realistic optimization can be carried out, integrating within the same framework both the system and all the constraints and boundary conditions that define it. Simulations based on entropy give the researcher a powerful analytical framework that crosses the disciplines of physics and links them together.