Author: Roberto Cerbino
Publisher: Frontiers Media SA
ISBN: 2832520359
Category : Science
Languages : en
Pages : 125
Book Description
Probing Out-of-Equilibrium Soft Matter
Author: Roberto Cerbino
Publisher: Frontiers Media SA
ISBN: 2832520359
Category : Science
Languages : en
Pages : 125
Book Description
Publisher: Frontiers Media SA
ISBN: 2832520359
Category : Science
Languages : en
Pages : 125
Book Description
Out-of-equilibrium Soft Matter
Author: Christina Kurzthaler
Publisher: Royal Society of Chemistry
ISBN: 1839169478
Category : Science
Languages : en
Pages : 348
Book Description
The term active fluids refers to motions that are created by transforming energy from the surroundings into directed motion. There are many examples, both natural and synthetic, including individual swimming bacteria or motile cells, drops and bubbles that move owing to surface stresses (so-called Marangoni motions), and chemical- or optical-driven colloids. Investigations into active fluids provide new insights into non-equilibrium systems, have the potential for novel applications, and open new directions in physics, chemistry, biology and engineering. This book provides an expert introduction to active fluids systems, covering simple to complex environments. It explains the interplay of chemical processes and hydrodynamics, including the roles of mechanical and rheological properties across active fluids, with reference to experiments, theory, and simulations. These concepts are discussed for a variety of scenarios, such as the trajectories of microswimmers, cell crawling and fluid stirring, and apply to collective behaviours of dense suspensions and active gels. Emerging avenues of research are highlighted, ranging from the role of active processes for biological functions to programmable active materials, showcasing the exciting potential of this rapidly-evolving research field.
Publisher: Royal Society of Chemistry
ISBN: 1839169478
Category : Science
Languages : en
Pages : 348
Book Description
The term active fluids refers to motions that are created by transforming energy from the surroundings into directed motion. There are many examples, both natural and synthetic, including individual swimming bacteria or motile cells, drops and bubbles that move owing to surface stresses (so-called Marangoni motions), and chemical- or optical-driven colloids. Investigations into active fluids provide new insights into non-equilibrium systems, have the potential for novel applications, and open new directions in physics, chemistry, biology and engineering. This book provides an expert introduction to active fluids systems, covering simple to complex environments. It explains the interplay of chemical processes and hydrodynamics, including the roles of mechanical and rheological properties across active fluids, with reference to experiments, theory, and simulations. These concepts are discussed for a variety of scenarios, such as the trajectories of microswimmers, cell crawling and fluid stirring, and apply to collective behaviours of dense suspensions and active gels. Emerging avenues of research are highlighted, ranging from the role of active processes for biological functions to programmable active materials, showcasing the exciting potential of this rapidly-evolving research field.
Non-equilibrium Soft Matter Physics
Author: Shigeyuki Komura
Publisher: World Scientific
ISBN: 9814458430
Category : Science
Languages : en
Pages : 435
Book Description
Soft matter is a concept which covers polymers, liquid crystals, colloids, amphiphilic molecules, glasses, granular and biological materials. One of the fundamental characteristic features of soft matter is that it exhibits various mesoscopic structures originating from a large number of internal degrees of freedom of each molecule. Due to such intermediate structures, soft matter can easily be brought into non-equilibrium states and cause non-linear responses by imposing external fields such as an electric field, a mechanical stress or a shear flow. Volume 4 of the series in Soft Condensed Matter focuses on the non-linear and non-equilibrium properties of soft matter. It contains a collection of review articles on the current topics of non-equilibrium soft matter physics written by leading experts in the field. The topics dealt with in this volume includes rheology of polymers and liquid crystals, dynamical properties of Langmuir monolayers at the air/water interface, hydrodynamics of membranes and twisted filaments as well as dynamics of deformable self-propelled particles and migration of biological cells. This book serves both as an introduction to students as well as a useful reference to researchers.
Publisher: World Scientific
ISBN: 9814458430
Category : Science
Languages : en
Pages : 435
Book Description
Soft matter is a concept which covers polymers, liquid crystals, colloids, amphiphilic molecules, glasses, granular and biological materials. One of the fundamental characteristic features of soft matter is that it exhibits various mesoscopic structures originating from a large number of internal degrees of freedom of each molecule. Due to such intermediate structures, soft matter can easily be brought into non-equilibrium states and cause non-linear responses by imposing external fields such as an electric field, a mechanical stress or a shear flow. Volume 4 of the series in Soft Condensed Matter focuses on the non-linear and non-equilibrium properties of soft matter. It contains a collection of review articles on the current topics of non-equilibrium soft matter physics written by leading experts in the field. The topics dealt with in this volume includes rheology of polymers and liquid crystals, dynamical properties of Langmuir monolayers at the air/water interface, hydrodynamics of membranes and twisted filaments as well as dynamics of deformable self-propelled particles and migration of biological cells. This book serves both as an introduction to students as well as a useful reference to researchers.
Soft and Hard Probes of QCD Topological Structures in Relativistic Heavy-Ion Collisions
Author: Shuzhe Shi
Publisher: Springer Nature
ISBN: 3030254828
Category : Science
Languages : en
Pages : 152
Book Description
This thesis makes significant advances in the quantitative understanding of two intrinsically linked yet technically very different phenomena in quantum chromodynamics (QCD). Firstly, the thesis investigates the soft probe of strong interaction topological fluctuations in the quark-gluon plasma (QGP) which is made possible via the anomalous chiral transport effects induced by such fluctuations. Here, the author makes contributions towards establishing the first comprehensive tool for quantitative prediction of the chiral magnetic effect in the QGP that is produced in heavy ion collision experiments. Secondly, the thesis deals with the hard probe of strongly coupled QGP created in heavy-ion collisions. In particular, this study addresses the basic question related to the nonperturbative color structure in the QGP via jet energy loss observables. The author further develops the CUJET computational model for jet quenching and uses it to analyze the topological degrees of freedom in quark-gluon plasma. The contributions this thesis makes towards these highly-challenging problems have already generated widespread impacts in the field of quark-gluon plasma and high-energy nuclear collisions.
Publisher: Springer Nature
ISBN: 3030254828
Category : Science
Languages : en
Pages : 152
Book Description
This thesis makes significant advances in the quantitative understanding of two intrinsically linked yet technically very different phenomena in quantum chromodynamics (QCD). Firstly, the thesis investigates the soft probe of strong interaction topological fluctuations in the quark-gluon plasma (QGP) which is made possible via the anomalous chiral transport effects induced by such fluctuations. Here, the author makes contributions towards establishing the first comprehensive tool for quantitative prediction of the chiral magnetic effect in the QGP that is produced in heavy ion collision experiments. Secondly, the thesis deals with the hard probe of strongly coupled QGP created in heavy-ion collisions. In particular, this study addresses the basic question related to the nonperturbative color structure in the QGP via jet energy loss observables. The author further develops the CUJET computational model for jet quenching and uses it to analyze the topological degrees of freedom in quark-gluon plasma. The contributions this thesis makes towards these highly-challenging problems have already generated widespread impacts in the field of quark-gluon plasma and high-energy nuclear collisions.
Magnetic Soft Matter
Author: Juan de Vicente
Publisher: Royal Society of Chemistry
ISBN: 1839162279
Category : Science
Languages : en
Pages : 469
Book Description
Magnetically responsive soft matter is a colloidal model system where interparticle interactions can be tuned through external magnetic fields. Covering the most recent literature in the field, with special emphasis on the physical mechanisms behind their rheological behaviour, this book aims to demonstrate the controllability of soft matter through an external (magnetic) stimulus. With chapters written by leading experts, fundamental topics are complemented by cutting edge research, in particular, discussions on advances in sedimentation stability, structural characterization using microCT, surface functionalization, bidisperse composites, self-assembly at interfaces and collective dynamics, friction and shear-thickening, dynamics, self-assembly and rheology under unsteady triaxial magnetic fields, theoretical developments and particle level numerical simulations, including contact forces and biomedical and tissue engineering applications. This complete perspective of the field attempts to bridge the gap between fundamentals and applications and is an excellent addition to any soft matter scientist's library.
Publisher: Royal Society of Chemistry
ISBN: 1839162279
Category : Science
Languages : en
Pages : 469
Book Description
Magnetically responsive soft matter is a colloidal model system where interparticle interactions can be tuned through external magnetic fields. Covering the most recent literature in the field, with special emphasis on the physical mechanisms behind their rheological behaviour, this book aims to demonstrate the controllability of soft matter through an external (magnetic) stimulus. With chapters written by leading experts, fundamental topics are complemented by cutting edge research, in particular, discussions on advances in sedimentation stability, structural characterization using microCT, surface functionalization, bidisperse composites, self-assembly at interfaces and collective dynamics, friction and shear-thickening, dynamics, self-assembly and rheology under unsteady triaxial magnetic fields, theoretical developments and particle level numerical simulations, including contact forces and biomedical and tissue engineering applications. This complete perspective of the field attempts to bridge the gap between fundamentals and applications and is an excellent addition to any soft matter scientist's library.
Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences
Author: T.A. Ezquerra
Publisher: Springer
ISBN: 3540959688
Category : Technology & Engineering
Languages : en
Pages : 331
Book Description
In a ?rst approximation, certainly rough, one can de?ne as non-crystalline materials those which are neither single-crystals nor poly-crystals. Within this category, we canincludedisorderedsolids,softcondensed matter,andlivesystemsamong others. Contrary to crystals, non-crystalline materials have in common that their intrinsic structures cannot be exclusively described by a discrete and periodical function but by a continuous function with short range of order. Structurally these systems have in common the relevance of length scales between those de?ned by the atomic and the macroscopic scale. In a simple ?uid, for example, mobile molecules may freely exchange their positions, so that their new positions are permutations of their old ones. By contrast, in a complex ?uid large groups of molecules may be interc- nected so that the permutation freedom within the group is lost, while the p- mutation between the groups is possible. In this case, the dominant characteristic length, which may de?ne the properties of the system, is not the molecular size but that of the groups. A central aspect of some non-crystalline materials is that they may self-organize. This is of particular importance for Soft-matter materials. Self-organization is characterized by the spontaneous creation of regular structures at different length scales which may exhibit a certain hierarchy that controls the properties of the system. X-ray scattering and diffraction have been for more than a hundred years an essential technique to characterize the structure of materials. Quite often scattering anddiffractionphenomenaexhibitedbynon-crystallinematerialshavebeenreferred to as non-crystalline diffraction.
Publisher: Springer
ISBN: 3540959688
Category : Technology & Engineering
Languages : en
Pages : 331
Book Description
In a ?rst approximation, certainly rough, one can de?ne as non-crystalline materials those which are neither single-crystals nor poly-crystals. Within this category, we canincludedisorderedsolids,softcondensed matter,andlivesystemsamong others. Contrary to crystals, non-crystalline materials have in common that their intrinsic structures cannot be exclusively described by a discrete and periodical function but by a continuous function with short range of order. Structurally these systems have in common the relevance of length scales between those de?ned by the atomic and the macroscopic scale. In a simple ?uid, for example, mobile molecules may freely exchange their positions, so that their new positions are permutations of their old ones. By contrast, in a complex ?uid large groups of molecules may be interc- nected so that the permutation freedom within the group is lost, while the p- mutation between the groups is possible. In this case, the dominant characteristic length, which may de?ne the properties of the system, is not the molecular size but that of the groups. A central aspect of some non-crystalline materials is that they may self-organize. This is of particular importance for Soft-matter materials. Self-organization is characterized by the spontaneous creation of regular structures at different length scales which may exhibit a certain hierarchy that controls the properties of the system. X-ray scattering and diffraction have been for more than a hundred years an essential technique to characterize the structure of materials. Quite often scattering anddiffractionphenomenaexhibitedbynon-crystallinematerialshavebeenreferred to as non-crystalline diffraction.
Scanning Probe Microscopy of Soft Matter
Author: Vladimir V. Tsukruk
Publisher: John Wiley & Sons
ISBN: 3527639969
Category : Technology & Engineering
Languages : en
Pages : 663
Book Description
Well-structured and adopting a pedagogical approach, this self-contained monograph covers the fundamentals of scanning probe microscopy, showing how to use the techniques for investigating physical and chemical properties on the nanoscale and how they can be used for a wide range of soft materials. It concludes with a section on the latest techniques in nanomanipulation and patterning. This first book to focus on the applications is a must-have for both newcomers and established researchers using scanning probe microscopy in soft matter research. From the contents: * Atomic Force Microscopy and Other Advanced Imaging Modes * Probing of Mechanical, Thermal Chemical and Electrical Properties * Amorphous, Poorly Ordered and Organized Polymeric Materials * Langmuir-Blodgett and Layer-by-Layer Structures * Multi-Component Polymer Systems and Fibers * Colloids and Microcapsules * Biomaterials and Biological Structures * Nanolithography with Intrusive AFM Tipand Dip-Pen Nanolithography * Microcantilever-Based Sensors
Publisher: John Wiley & Sons
ISBN: 3527639969
Category : Technology & Engineering
Languages : en
Pages : 663
Book Description
Well-structured and adopting a pedagogical approach, this self-contained monograph covers the fundamentals of scanning probe microscopy, showing how to use the techniques for investigating physical and chemical properties on the nanoscale and how they can be used for a wide range of soft materials. It concludes with a section on the latest techniques in nanomanipulation and patterning. This first book to focus on the applications is a must-have for both newcomers and established researchers using scanning probe microscopy in soft matter research. From the contents: * Atomic Force Microscopy and Other Advanced Imaging Modes * Probing of Mechanical, Thermal Chemical and Electrical Properties * Amorphous, Poorly Ordered and Organized Polymeric Materials * Langmuir-Blodgett and Layer-by-Layer Structures * Multi-Component Polymer Systems and Fibers * Colloids and Microcapsules * Biomaterials and Biological Structures * Nanolithography with Intrusive AFM Tipand Dip-Pen Nanolithography * Microcantilever-Based Sensors
Soft Matter
Author: Wim van Saarloos
Publisher: Princeton University Press
ISBN: 0691191301
Category : Science
Languages : en
Pages : 622
Book Description
"Soft matter science is an interdisciplinary field at the interface of physics, biology, chemistry, engineering, and materials science. It encompasses colloids, polymers, and liquid crystals as well as rapidly emerging topics such as metamaterials, memory formation and learning in matter, bioactive systems, and artificial life. This textbook introduces key phenomena and concepts in soft matter from a modern perspective, marrying established knowledge with the latest developments and applications. The presentation integrates statistical mechanics, dynamical systems, and hydrodynamic approaches, emphasizing conservation laws and broken symmetries as guiding principles while paying attention to computational and machine learning advances. The book features introductory chapters on fluid mechanics, elasticity, and stochastic phenomena and also covers advanced topics such as pattern formation and active matter. it discusses technological applications as well as relevant phenomena in the life sciences and offers perspectives on emerging research directions"--
Publisher: Princeton University Press
ISBN: 0691191301
Category : Science
Languages : en
Pages : 622
Book Description
"Soft matter science is an interdisciplinary field at the interface of physics, biology, chemistry, engineering, and materials science. It encompasses colloids, polymers, and liquid crystals as well as rapidly emerging topics such as metamaterials, memory formation and learning in matter, bioactive systems, and artificial life. This textbook introduces key phenomena and concepts in soft matter from a modern perspective, marrying established knowledge with the latest developments and applications. The presentation integrates statistical mechanics, dynamical systems, and hydrodynamic approaches, emphasizing conservation laws and broken symmetries as guiding principles while paying attention to computational and machine learning advances. The book features introductory chapters on fluid mechanics, elasticity, and stochastic phenomena and also covers advanced topics such as pattern formation and active matter. it discusses technological applications as well as relevant phenomena in the life sciences and offers perspectives on emerging research directions"--
Soft Matter And Biomaterials On The Nanoscale: The Wspc Reference On Functional Nanomaterials - Part I (In 4 Volumes)
Author:
Publisher: World Scientific
ISBN: 9811218072
Category : Science
Languages : en
Pages : 1885
Book Description
This book is indexed in Chemical Abstracts ServiceSoft and bio-nanomaterials offer a tremendously rich behavior due to the diversity and tailorability of their structures. Built from polymers, nanoparticles, small and large molecules, peptoids and other nanoscale building blocks, such materials exhibit exciting functions, either intrinsically or through the engineering of their organization and combination of blocks. Thus, it is not surprising that a variety of challenges, for example, in energy storage, environment protection, advanced manufacturing, purification and healthcare, can be addressed using these materials. The recent advances in understanding the behavior of soft matter and biomaterials are being actively translated into functional materials systems and devices, which take advantages of newly discovered and specifically created morphologies with desired properties. This major reference work presents a detailed overview of recent research developments on fundamental and application-inspired aspects of soft and bio-nanomaterials and their emerging functions, and will be divided into four volumes: Vol 1: Soft Matter under Geometrical Confinement: From Fundamentals at Planar Surfaces and Interfaces to Functionalities of Nanoporous Materials; Vol 2: Polymers on the Nanoscale: Nano-structured Polymers and Their Applications; Vol 3: Bio-Inspired Nanomaterials: Nanomaterials Built from Biomolecules and Using Bio-derived Principles; Vol 4: Nanomedicine: Nanoscale Materials in Nano/Bio Medicine.
Publisher: World Scientific
ISBN: 9811218072
Category : Science
Languages : en
Pages : 1885
Book Description
This book is indexed in Chemical Abstracts ServiceSoft and bio-nanomaterials offer a tremendously rich behavior due to the diversity and tailorability of their structures. Built from polymers, nanoparticles, small and large molecules, peptoids and other nanoscale building blocks, such materials exhibit exciting functions, either intrinsically or through the engineering of their organization and combination of blocks. Thus, it is not surprising that a variety of challenges, for example, in energy storage, environment protection, advanced manufacturing, purification and healthcare, can be addressed using these materials. The recent advances in understanding the behavior of soft matter and biomaterials are being actively translated into functional materials systems and devices, which take advantages of newly discovered and specifically created morphologies with desired properties. This major reference work presents a detailed overview of recent research developments on fundamental and application-inspired aspects of soft and bio-nanomaterials and their emerging functions, and will be divided into four volumes: Vol 1: Soft Matter under Geometrical Confinement: From Fundamentals at Planar Surfaces and Interfaces to Functionalities of Nanoporous Materials; Vol 2: Polymers on the Nanoscale: Nano-structured Polymers and Their Applications; Vol 3: Bio-Inspired Nanomaterials: Nanomaterials Built from Biomolecules and Using Bio-derived Principles; Vol 4: Nanomedicine: Nanoscale Materials in Nano/Bio Medicine.
Principles of Soft-Matter Dynamics
Author: Rainer Kimmich
Publisher: Springer Science & Business Media
ISBN: 9400755368
Category : Science
Languages : en
Pages : 670
Book Description
Practical applications of soft-matter dynamics are of vital importance in material science, chemical engineering, biophysics and biotechnology, food processing, plastic industry, micro- and nano-system technology, and other technologies based on non-crystalline and non-glassy materials. Principles of Soft-Matter Dynamics. Basic Theories, Non-invasive Methods, Mesoscopic Aspects covers fundamental dynamic phenomena such as diffusion, relaxation, fluid dynamics, normal modes, order fluctuations, adsorption and wetting processes. It also elucidates the applications of the principles and of the methods referring to polymers, liquid crystals and other mesophases, membranes, amphiphilic systems, networks, and porous media including multiphase and multi-component materials, colloids, fine-particles, and emulsions. The book presents all formalisms, examines the basic concepts needed for applications of soft-matter science, and reviews non-invasive experimental techniques such as the multi-faceted realm of NMR methods, neutron and light quasi-elastic scattering, mechanical relaxation and dielectric broadband spectroscopy which are treated and compared on a common and consistent foundation. The standard concepts of dynamics in fluids, polymers, liquid crystals, colloids and adsorbates are comprehensively derived in a step-by-step manner. Principles and analogies common to diverse application fields are elucidated and theoretical and experimental aspects are supplemented by computational-physics considerations. Principles of Soft-Matter Dynamics. Basic Theories, Non-invasive Methods, Mesoscopic Aspects appeals to graduate and PhD students, post-docs, researchers, and industrial scientists alike.
Publisher: Springer Science & Business Media
ISBN: 9400755368
Category : Science
Languages : en
Pages : 670
Book Description
Practical applications of soft-matter dynamics are of vital importance in material science, chemical engineering, biophysics and biotechnology, food processing, plastic industry, micro- and nano-system technology, and other technologies based on non-crystalline and non-glassy materials. Principles of Soft-Matter Dynamics. Basic Theories, Non-invasive Methods, Mesoscopic Aspects covers fundamental dynamic phenomena such as diffusion, relaxation, fluid dynamics, normal modes, order fluctuations, adsorption and wetting processes. It also elucidates the applications of the principles and of the methods referring to polymers, liquid crystals and other mesophases, membranes, amphiphilic systems, networks, and porous media including multiphase and multi-component materials, colloids, fine-particles, and emulsions. The book presents all formalisms, examines the basic concepts needed for applications of soft-matter science, and reviews non-invasive experimental techniques such as the multi-faceted realm of NMR methods, neutron and light quasi-elastic scattering, mechanical relaxation and dielectric broadband spectroscopy which are treated and compared on a common and consistent foundation. The standard concepts of dynamics in fluids, polymers, liquid crystals, colloids and adsorbates are comprehensively derived in a step-by-step manner. Principles and analogies common to diverse application fields are elucidated and theoretical and experimental aspects are supplemented by computational-physics considerations. Principles of Soft-Matter Dynamics. Basic Theories, Non-invasive Methods, Mesoscopic Aspects appeals to graduate and PhD students, post-docs, researchers, and industrial scientists alike.