Privacy-Preserving Machine Learning for Speech Processing

Privacy-Preserving Machine Learning for Speech Processing PDF Author: Manas A. Pathak
Publisher: Springer Science & Business Media
ISBN: 1461446384
Category : Computers
Languages : en
Pages : 145

Get Book Here

Book Description
"Doctoral Thesis accepted by Carnegie Mellon University, USA"--Title page.

Privacy-Preserving Machine Learning for Speech Processing

Privacy-Preserving Machine Learning for Speech Processing PDF Author: Manas A. Pathak
Publisher: Springer Science & Business Media
ISBN: 1461446384
Category : Computers
Languages : en
Pages : 145

Get Book Here

Book Description
"Doctoral Thesis accepted by Carnegie Mellon University, USA"--Title page.

Grokking Deep Learning

Grokking Deep Learning PDF Author: Andrew W. Trask
Publisher: Simon and Schuster
ISBN: 163835720X
Category : Computers
Languages : en
Pages : 475

Get Book Here

Book Description
Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide

Privacy-Preserving Machine Learning

Privacy-Preserving Machine Learning PDF Author: J. Morris Chang
Publisher: Simon and Schuster
ISBN: 1617298042
Category : Computers
Languages : en
Pages : 334

Get Book Here

Book Description
Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy-Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You’ll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you’re done reading, you’ll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning applications need massive amounts of data. It’s up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you’ll need to secure your data pipelines end to end. About the Book Privacy-Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You’ll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you’ll develop in the final chapter. What’s Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Author J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Table of Contents PART 1 - BASICS OF PRIVACY-PRESERVING MACHINE LEARNING WITH DIFFERENTIAL PRIVACY 1 Privacy considerations in machine learning 2 Differential privacy for machine learning 3 Advanced concepts of differential privacy for machine learning PART 2 - LOCAL DIFFERENTIAL PRIVACY AND SYNTHETIC DATA GENERATION 4 Local differential privacy for machine learning 5 Advanced LDP mechanisms for machine learning 6 Privacy-preserving synthetic data generation PART 3 - BUILDING PRIVACY-ASSURED MACHINE LEARNING APPLICATIONS 7 Privacy-preserving data mining techniques 8 Privacy-preserving data management and operations 9 Compressive privacy for machine learning 10 Putting it all together: Designing a privacy-enhanced platform (DataHub)

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security PDF Author: Indrajit Ray
Publisher:
ISBN: 9781450338325
Category : Computer science
Languages : en
Pages :

Get Book Here

Book Description
CCS'15: The 22nd ACM Conference on Computer and Communications Security Oct 12, 2015-Oct 16, 2015 Denver, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.

Privacy-Preserving Deep Learning

Privacy-Preserving Deep Learning PDF Author: Kwangjo Kim
Publisher: Springer Nature
ISBN: 9811637644
Category : Computers
Languages : en
Pages : 81

Get Book Here

Book Description
This book discusses the state-of-the-art in privacy-preserving deep learning (PPDL), especially as a tool for machine learning as a service (MLaaS), which serves as an enabling technology by combining classical privacy-preserving and cryptographic protocols with deep learning. Google and Microsoft announced a major investment in PPDL in early 2019. This was followed by Google’s infamous announcement of “Private Join and Compute,” an open source PPDL tools based on secure multi-party computation (secure MPC) and homomorphic encryption (HE) in June of that year. One of the challenging issues concerning PPDL is selecting its practical applicability despite the gap between the theory and practice. In order to solve this problem, it has recently been proposed that in addition to classical privacy-preserving methods (HE, secure MPC, differential privacy, secure enclaves), new federated or split learning for PPDL should also be applied. This concept involves building a cloud framework that enables collaborative learning while keeping training data on client devices. This successfully preserves privacy and while allowing the framework to be implemented in the real world. This book provides fundamental insights into privacy-preserving and deep learning, offering a comprehensive overview of the state-of-the-art in PPDL methods. It discusses practical issues, and leveraging federated or split-learning-based PPDL. Covering the fundamental theory of PPDL, the pros and cons of current PPDL methods, and addressing the gap between theory and practice in the most recent approaches, it is a valuable reference resource for a general audience, undergraduate and graduate students, as well as practitioners interested learning about PPDL from the scratch, and researchers wanting to explore PPDL for their applications.

Federated Learning

Federated Learning PDF Author: Qiang Yang
Publisher: Springer Nature
ISBN: 3030630765
Category : Computers
Languages : en
Pages : 291

Get Book Here

Book Description
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”

Machine Learning in Signal Processing

Machine Learning in Signal Processing PDF Author: Sudeep Tanwar
Publisher: CRC Press
ISBN: 1000487792
Category : Technology & Engineering
Languages : en
Pages : 389

Get Book Here

Book Description
Machine Learning in Signal Processing: Applications, Challenges, and the Road Ahead offers a comprehensive approach toward research orientation for familiarizing signal processing (SP) concepts to machine learning (ML). ML, as the driving force of the wave of artificial intelligence (AI), provides powerful solutions to many real-world technical and scientific challenges. This book will present the most recent and exciting advances in signal processing for ML. The focus is on understanding the contributions of signal processing and ML, and its aim to solve some of the biggest challenges in AI and ML. FEATURES Focuses on addressing the missing connection between signal processing and ML Provides a one-stop guide reference for readers Oriented toward material and flow with regards to general introduction and technical aspects Comprehensively elaborates on the material with examples and diagrams This book is a complete resource designed exclusively for advanced undergraduate students, post-graduate students, research scholars, faculties, and academicians of computer science and engineering, computer science and applications, and electronics and telecommunication engineering.

Statistical Language and Speech Processing

Statistical Language and Speech Processing PDF Author: Thierry Dutoit
Publisher: Springer
ISBN: 303000810X
Category : Computers
Languages : en
Pages : 196

Get Book Here

Book Description
This book constitutes the proceedings of the 6th International Conference on Statistical Language and Speech Processing, SLSP 2018, held in Mons, Belgium, in October 2018. The 15 full papers presented in this volume were carefully reviewed and selected from 40 submissions. They were organized in topical sections named: speech synthesis and spoken language generation; speech recognition and post-processing; natural language processing and understanding; and text processing and analysis.

Towards Responsible Machine Translation

Towards Responsible Machine Translation PDF Author: Helena Moniz
Publisher: Springer Nature
ISBN: 3031146891
Category : Philosophy
Languages : en
Pages : 242

Get Book Here

Book Description
This book is a contribution to the research community towards thinking and reflecting on what Responsible Machine Translation really means. It was conceived as an open dialogue across disciplines, from philosophy to law, with the ultimate goal of providing a wide spectrum of topics to reflect on. It covers aspects related to the development of Machine translation systems, as well as its use in different scenarios, and the societal impact that it may have. This text appeals to students and researchers in linguistics, translation, natural language processing, philosophy, and law as well as professionals working in these fields.

Curve and Surface Fitting with Splines

Curve and Surface Fitting with Splines PDF Author: Paul Dierckx
Publisher: Oxford University Press
ISBN: 9780198534402
Category : Computers
Languages : en
Pages : 308

Get Book Here

Book Description
The fitting of a curve or surface through a set of observational data is a very frequent problem in different disciplines (mathematics, engineering, medicine, ...) with many interesting applications. This book describes the algorithms and mathematical fundamentals of a widely used software package for data fitting with (tensor product) splines. As such it gives a survey of possibilities and benefits but also of the problems to cope with when approximating with this popular type of function. In particular it is demonstrated in detail how the properties of B-splines can be fully exploited for improving the computational efficiency and for incorporating different boundary or shape preserving constraints. Special attention is also paid to strategies for an automatic and adaptive knot selection with intent to obtain serious data reductions. The practical use of the smoothing software is illustrated with many examples, academic as well as taken from real life.