Author: Walter R. Fehr
Publisher:
ISBN:
Category : Field crops
Languages : en
Pages : 560
Book Description
Principles of Cultivar Development: Theory and technique
Author: Walter R. Fehr
Publisher:
ISBN:
Category : Field crops
Languages : en
Pages : 560
Book Description
Publisher:
ISBN:
Category : Field crops
Languages : en
Pages : 560
Book Description
Principles of Cultivar Development
Author: Walter R. Fehr
Publisher:
ISBN:
Category : Plant breeding
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Plant breeding
Languages : en
Pages :
Book Description
Principles of Plant Genetics and Breeding
Author: George Acquaah
Publisher: John Wiley & Sons
ISBN: 1119626323
Category : Science
Languages : en
Pages : 855
Book Description
The revised edition of the bestselling textbook, covering both classical and molecular plant breeding Principles of Plant Genetics and Breeding integrates theory and practice to provide an insightful examination of the fundamental principles and advanced techniques of modern plant breeding. Combining both classical and molecular tools, this comprehensive textbook describes the multidisciplinary strategies used to produce new varieties of crops and plants, particularly in response to the increasing demands to of growing populations. Illustrated chapters cover a wide range of topics, including plant reproductive systems, germplasm for breeding, molecular breeding, the common objectives of plant breeders, marketing and societal issues, and more. Now in its third edition, this essential textbook contains extensively revised content that reflects recent advances and current practices. Substantial updates have been made to its molecular genetics and breeding sections, including discussions of new breeding techniques such as zinc finger nuclease, oligonucleotide directed mutagenesis, RNA-dependent DNA methylation, reverse breeding, genome editing, and others. A new table enables efficient comparison of an expanded list of molecular markers, including Allozyme, RFLPs, RAPD, SSR, ISSR, DAMD, AFLP, SNPs and ESTs. Also, new and updated “Industry Highlights” sections provide examples of the practical application of plant breeding methods to real-world problems. This new edition: Organizes topics to reflect the stages of an actual breeding project Incorporates the most recent technologies in the field, such as CRSPR genome edition and grafting on GM stock Includes numerous illustrations and end-of-chapter self-assessment questions, key references, suggested readings, and links to relevant websites Features a companion website containing additional artwork and instructor resources Principles of Plant Genetics and Breeding offers researchers and professionals an invaluable resource and remains the ideal textbook for advanced undergraduates and graduates in plant science, particularly those studying plant breeding, biotechnology, and genetics.
Publisher: John Wiley & Sons
ISBN: 1119626323
Category : Science
Languages : en
Pages : 855
Book Description
The revised edition of the bestselling textbook, covering both classical and molecular plant breeding Principles of Plant Genetics and Breeding integrates theory and practice to provide an insightful examination of the fundamental principles and advanced techniques of modern plant breeding. Combining both classical and molecular tools, this comprehensive textbook describes the multidisciplinary strategies used to produce new varieties of crops and plants, particularly in response to the increasing demands to of growing populations. Illustrated chapters cover a wide range of topics, including plant reproductive systems, germplasm for breeding, molecular breeding, the common objectives of plant breeders, marketing and societal issues, and more. Now in its third edition, this essential textbook contains extensively revised content that reflects recent advances and current practices. Substantial updates have been made to its molecular genetics and breeding sections, including discussions of new breeding techniques such as zinc finger nuclease, oligonucleotide directed mutagenesis, RNA-dependent DNA methylation, reverse breeding, genome editing, and others. A new table enables efficient comparison of an expanded list of molecular markers, including Allozyme, RFLPs, RAPD, SSR, ISSR, DAMD, AFLP, SNPs and ESTs. Also, new and updated “Industry Highlights” sections provide examples of the practical application of plant breeding methods to real-world problems. This new edition: Organizes topics to reflect the stages of an actual breeding project Incorporates the most recent technologies in the field, such as CRSPR genome edition and grafting on GM stock Includes numerous illustrations and end-of-chapter self-assessment questions, key references, suggested readings, and links to relevant websites Features a companion website containing additional artwork and instructor resources Principles of Plant Genetics and Breeding offers researchers and professionals an invaluable resource and remains the ideal textbook for advanced undergraduates and graduates in plant science, particularly those studying plant breeding, biotechnology, and genetics.
Principles and Procedures of Plant Breeding
Author: G. S. Chahal
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842650363
Category : Nature
Languages : en
Pages : 628
Book Description
Alternate approaches for the exploitation of heterosis and population improvement have been elaborated with the help of schematic diagrams.
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842650363
Category : Nature
Languages : en
Pages : 628
Book Description
Alternate approaches for the exploitation of heterosis and population improvement have been elaborated with the help of schematic diagrams.
Organic Farming, Pest Control and Remediation of Soil Pollutants
Author: Eric Lichtfouse
Publisher: Springer Science & Business Media
ISBN: 1402096542
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
Sustainable agriculture is a rapidly growing field aiming at producing food and energy in a sustainable way for humans and their children. Sustainable agriculture is a discipline that addresses current issues such as climate change, increasing food and fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil erosion, fertility loss, pest control, and biodiversity depletion. Novel, environmentally-friendly solutions are proposed based on integrated knowledge from sciences as diverse as agronomy, soil science, molecular biology, chemistry, toxicology, ecology, economy, and social sciences. Indeed, sustainable agriculture decipher mechanisms of processes that occur from the molecular level to the farming system to the global level at time scales ranging from seconds to centuries. For that, scientists use the system approach that involves studying components and interactions of a whole system to address scientific, economic and social issues. In that respect, sustainable agriculture is not a classical, narrow science. Instead of solving problems using the classical painkiller approach that treats only negative impacts, sustainable agriculture treats problem sources. Because most actual society issues are now intertwined, global, and fast-developing, sustainable agriculture will bring solutions to build a safer world. This book series gathers review articles that analyze current agricultural issues and knowledge, then propose alternative solutions. It will therefore help all scientists, decision-makers, professors, farmers and politicians who wish to build a safe agriculture, energy and food system for future generations.
Publisher: Springer Science & Business Media
ISBN: 1402096542
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
Sustainable agriculture is a rapidly growing field aiming at producing food and energy in a sustainable way for humans and their children. Sustainable agriculture is a discipline that addresses current issues such as climate change, increasing food and fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil erosion, fertility loss, pest control, and biodiversity depletion. Novel, environmentally-friendly solutions are proposed based on integrated knowledge from sciences as diverse as agronomy, soil science, molecular biology, chemistry, toxicology, ecology, economy, and social sciences. Indeed, sustainable agriculture decipher mechanisms of processes that occur from the molecular level to the farming system to the global level at time scales ranging from seconds to centuries. For that, scientists use the system approach that involves studying components and interactions of a whole system to address scientific, economic and social issues. In that respect, sustainable agriculture is not a classical, narrow science. Instead of solving problems using the classical painkiller approach that treats only negative impacts, sustainable agriculture treats problem sources. Because most actual society issues are now intertwined, global, and fast-developing, sustainable agriculture will bring solutions to build a safer world. This book series gathers review articles that analyze current agricultural issues and knowledge, then propose alternative solutions. It will therefore help all scientists, decision-makers, professors, farmers and politicians who wish to build a safe agriculture, energy and food system for future generations.
Principles of Cultivar Development: Crop species
Author: Walter R. Fehr
Publisher: MacMillan Publishing Company
ISBN: 9780029491812
Category : Cultivos extensivos
Languages : en
Pages : 768
Book Description
Publisher: MacMillan Publishing Company
ISBN: 9780029491812
Category : Cultivos extensivos
Languages : en
Pages : 768
Book Description
Quantitative Genetics in Maize Breeding
Author: Arnel R. Hallauer
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669
Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669
Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm
Plant Breeding and Cultivar Development
Author: D. P. Singh
Publisher: Academic Press
ISBN: 0128175648
Category : Technology & Engineering
Languages : en
Pages : 663
Book Description
Plant Breeding and Cultivar Development features an optimal balance between classical and modern tools and techniques related to plant breeding. Written for a global audience and based on the extensive international experience of the authors, the book features pertinent examples from major and minor world crops. Advanced data analytics (machine learning), phenomics and artificial intelligence are explored in the book's 28 chapters that cover classical and modern plant breeding. By presenting these advancements in specific detail, private and public sector breeding programs will learn about new, effective and efficient implementation. The insights are clear enough that non-plant breeding majoring students will find it useful to learn about the subject, while advanced level students and researchers and practitioners will find practical examples that help them implement their work. - Bridges the gap between conventional breeding practices and state-of-the-art technologies - Provides real-world case studies of a wide range of plant breeding techniques and practices - Combines insights from genetics, genomics, breeding science, statistics, computer science and engineering for crop improvement and cultivar development
Publisher: Academic Press
ISBN: 0128175648
Category : Technology & Engineering
Languages : en
Pages : 663
Book Description
Plant Breeding and Cultivar Development features an optimal balance between classical and modern tools and techniques related to plant breeding. Written for a global audience and based on the extensive international experience of the authors, the book features pertinent examples from major and minor world crops. Advanced data analytics (machine learning), phenomics and artificial intelligence are explored in the book's 28 chapters that cover classical and modern plant breeding. By presenting these advancements in specific detail, private and public sector breeding programs will learn about new, effective and efficient implementation. The insights are clear enough that non-plant breeding majoring students will find it useful to learn about the subject, while advanced level students and researchers and practitioners will find practical examples that help them implement their work. - Bridges the gap between conventional breeding practices and state-of-the-art technologies - Provides real-world case studies of a wide range of plant breeding techniques and practices - Combines insights from genetics, genomics, breeding science, statistics, computer science and engineering for crop improvement and cultivar development
Quantitative Genetics and Breeding Methods in Autopolyploid Plants
Author: André Gallais
Publisher: Editions Quae
ISBN: 9782738010933
Category : Science
Languages : en
Pages : 522
Book Description
This book presents basic information about population genetics, quantitative genetics, breeding methods and creation of new varieties taking into account the particular characteristics of autopolyploidy. A number of results are given as a function of ploidy level, the case of diploidy being considered as a specific case. QTL detection and marker assisted selection are also addressed. This book is intended for researchers working on autopolyploid species, as well as for lecturers and students who want to gain better knowledge of these issues by considering the ploidy level. It will also be valuable to breeders wishing to choose methods for breeding and creating the most adapted varieties.
Publisher: Editions Quae
ISBN: 9782738010933
Category : Science
Languages : en
Pages : 522
Book Description
This book presents basic information about population genetics, quantitative genetics, breeding methods and creation of new varieties taking into account the particular characteristics of autopolyploidy. A number of results are given as a function of ploidy level, the case of diploidy being considered as a specific case. QTL detection and marker assisted selection are also addressed. This book is intended for researchers working on autopolyploid species, as well as for lecturers and students who want to gain better knowledge of these issues by considering the ploidy level. It will also be valuable to breeders wishing to choose methods for breeding and creating the most adapted varieties.
Molecular Breeding of Forage and Turf
Author: Toshihiko Yamada
Publisher: Springer Science & Business Media
ISBN: 0387791442
Category : Science
Languages : en
Pages : 342
Book Description
The 5th International Symposium on the Molecular Breeding of Forage and Turf covers all aspects of molecular breeding of forage and turf plants, from gene discovery, functional genomics, molecular genetics and marker technology, marker-assisted selection, transgenesis to transgenic molecular breeding; address applications - among others - for enhanced quality, tolerance to biotic and abiotic stresses; relating to forage grasses, forage legumes, their bacterial and fungal endosymbionts, as well as turf grasses. The Symposium includes keynote presentations from international science leaders in the above fields and offer abstracts in the following topics - breeding and functional genomics for tolerance to biotic stress, - Molecular breeding and functional genomics for tolerance to abiotic stress, - Molecular genetics and modification of flowering and reproductive development, - Genomics of plant-symbiont relations, - Molecular breeding for animal, human and environmental welfare, - Development and Application of molecular technologies in forage and turf improvement, - Bioinformatics-bringing data to a usable form for breeders, - Population and quantitative genetic aspects of molecular breeding, - Gene manipulation, field testing, risk assessment and biosafety, - Intellectual property rights for molecular tools or marker systems.
Publisher: Springer Science & Business Media
ISBN: 0387791442
Category : Science
Languages : en
Pages : 342
Book Description
The 5th International Symposium on the Molecular Breeding of Forage and Turf covers all aspects of molecular breeding of forage and turf plants, from gene discovery, functional genomics, molecular genetics and marker technology, marker-assisted selection, transgenesis to transgenic molecular breeding; address applications - among others - for enhanced quality, tolerance to biotic and abiotic stresses; relating to forage grasses, forage legumes, their bacterial and fungal endosymbionts, as well as turf grasses. The Symposium includes keynote presentations from international science leaders in the above fields and offer abstracts in the following topics - breeding and functional genomics for tolerance to biotic stress, - Molecular breeding and functional genomics for tolerance to abiotic stress, - Molecular genetics and modification of flowering and reproductive development, - Genomics of plant-symbiont relations, - Molecular breeding for animal, human and environmental welfare, - Development and Application of molecular technologies in forage and turf improvement, - Bioinformatics-bringing data to a usable form for breeders, - Population and quantitative genetic aspects of molecular breeding, - Gene manipulation, field testing, risk assessment and biosafety, - Intellectual property rights for molecular tools or marker systems.