Principles and Technology of MODFETs

Principles and Technology of MODFETs PDF Author: Hadis Morkoç
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 296

Get Book Here

Book Description
Since the invention of the transistor, there has been a great deal of activity and progress in semiconductor technology and understanding, particularly in new heterostructures and superlattices as well as devices based on them. With the development of high quality SiO2 on Si having low interface state densities, MOSFET devices relying on the high mobility two dimensional electron became available in the 1960s and represent the workhorse of integrated circuits today.

Principles and Technology of MODFETs

Principles and Technology of MODFETs PDF Author: Hadis Morkoç
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 296

Get Book Here

Book Description
Since the invention of the transistor, there has been a great deal of activity and progress in semiconductor technology and understanding, particularly in new heterostructures and superlattices as well as devices based on them. With the development of high quality SiO2 on Si having low interface state densities, MOSFET devices relying on the high mobility two dimensional electron became available in the 1960s and represent the workhorse of integrated circuits today.

Principles and Technology of MODFETs

Principles and Technology of MODFETs PDF Author: Hadis Morkoç
Publisher:
ISBN:
Category : Modulation-doped field-effect transistors
Languages : en
Pages : 282

Get Book Here

Book Description


Principles and Technology of MODFETs

Principles and Technology of MODFETs PDF Author: Hadis Morko?
Publisher: Wiley
ISBN: 9780471929956
Category : Technology & Engineering
Languages : en
Pages : 550

Get Book Here

Book Description
An acknowledged world authority on modulation doped field effect transistors (MODFETS) offers a detailed comparison of MODFETS performance--both as microwave and digital devices--with other structures. Concentrates on basic aspects of design and measurement in electronic engineering. Introductory material on heterojunction and semiconductor physics include crystalline structures, dynamics of interfaces, carrier densities, band discontinuities plus the treatment of stress and strain and their effect on the band structures.

Principles & Technology of MODFETS V 2 (see 0-471-92995-6)

Principles & Technology of MODFETS V 2 (see 0-471-92995-6) PDF Author: Hadis Morkoç
Publisher: Wiley
ISBN: 9780471929321
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Since the invention of the transistor, there has been a great deal of activity and progress in semiconductor technology and understanding, particularly in new heterostructures and superlattices as well as devices based on them. With the development of high quality SiO2 on Si having low interface state densities, MOSFET devices relying on the high mobility two dimensional electron became available in the 1960s and represent the workhorse of integrated circuits today.

Principles and Technology of MODFETS

Principles and Technology of MODFETS PDF Author: Hadis Morkoç
Publisher:
ISBN: 9780598002808
Category :
Languages : en
Pages : 268

Get Book Here

Book Description


Nanowire Field Effect Transistors: Principles and Applications

Nanowire Field Effect Transistors: Principles and Applications PDF Author: Dae Mann Kim
Publisher: Springer Science & Business Media
ISBN: 1461481244
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

MOSFET Modeling with SPICE

MOSFET Modeling with SPICE PDF Author: Daniel Foty
Publisher: Prentice Hall
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 680

Get Book Here

Book Description
This book will help CMOS circuit designers make the best possible use of SPICE models, and will prepare them for new models that may soon be introduced. Introduces SPICE modeling and its use in CMOS circuit design. Presents the formalism of model building and the semiconductor physics of MOS structures. Covers each important SPICE model, showing how to choose the appropriate model. Discusses the popular HSPICE Level 28, as well as Levels 1-3, BSIM 1-3, and MOS Model 9. Presents techniques for accounting for systematic process variations. Describes new model candidates, including the Power-Lane Model, the PCIM Model, and the EKV Model. Includes extensive examples throughout. Practicing engineers and scientists in the semiconductor industry; engineering faculty and students.

Advanced Nanoscale MOSFET Architectures

Advanced Nanoscale MOSFET Architectures PDF Author: Kalyan Biswas
Publisher: John Wiley & Sons
ISBN: 1394188951
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book Here

Book Description
Comprehensive reference on the fundamental principles and basic physics dictating metal–oxide–semiconductor field-effect transistor (MOSFET) operation Advanced Nanoscale MOSFET Architectures provides an in-depth review of modern metal–oxide–semiconductor field-effect transistor (MOSFET) device technologies and advancements, with information on their operation, various architectures, fabrication, materials, modeling and simulation methods, circuit applications, and other aspects related to nanoscale MOSFET technology. The text begins with an introduction to the foundational technology before moving on to describe challenges associated with the scaling of nanoscale devices. Other topics covered include device physics and operation, strain engineering for highly scaled MOSFETs, tunnel FET, graphene based field effect transistors, and more. The text also compares silicon bulk and devices, nanosheet transistors and introduces low-power circuit design using advanced MOSFETs. Additional topics covered include: High-k gate dielectrics and metal gate electrodes for multi-gate MOSFETs, covering gate stack processing and metal gate modification Strain engineering in 3D complementary metal-oxide semiconductors (CMOS) and its scaling impact, and strain engineering in silicon–germanium (SiGe) FinFET and its challenges and future perspectives TCAD simulation of multi-gate MOSFET, covering model calibration and device performance for analog and RF applications Description of the design of an analog amplifier circuit using digital CMOS technology of SCL for ultra-low power VLSI applications Advanced Nanoscale MOSFET Architectures helps readers understand device physics and design of new structures and material compositions, making it an important resource for the researchers and professionals who are carrying out research in the field, along with students in related programs of study.

High-Speed Heterostructure Devices

High-Speed Heterostructure Devices PDF Author: Patrick Roblin
Publisher: Cambridge University Press
ISBN: 1139437461
Category : Technology & Engineering
Languages : en
Pages : 726

Get Book Here

Book Description
Fuelled by rapid growth in communications technology, silicon heterostructures and related high-speed semiconductors are spearheading the drive toward smaller, faster and lower power devices. High-Speed Heterostructure Devices is a textbook on modern high-speed semiconductor devices intended for both graduate students and practising engineers. This book is concerned with the underlying physics of heterostructures as well as some of the most recent techniques for modeling and simulating these devices. Emphasis is placed on heterostructure devices of the immediate future such as the MODFET, HBT and RTD. The principles of operation of other devices such as the Bloch Oscillator, RITD, Gunn diode, quantum cascade laser and SOI and LD MOSFETs are also introduced. Initially developed for a graduate course taught at Ohio State University, the book comes with a complete set of homework problems and a web link to MATLAB programs supporting the lecture material.

Physics of Semiconductor Devices

Physics of Semiconductor Devices PDF Author: Simon M. Sze
Publisher: John Wiley & Sons
ISBN: 0470068302
Category : Technology & Engineering
Languages : en
Pages : 828

Get Book Here

Book Description
The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.