Author: Richard D. McKirahan Jr.
Publisher: Princeton University Press
ISBN: 140088716X
Category : Philosophy
Languages : en
Pages : 355
Book Description
By a thorough study of the Posterior Analytics and related Aristotelian texts, Richard McKirahan reconstructs Aristotle's theory of episteme--science. The Posterior Analytics contains the first extensive treatment of the nature and structure of science in the history of philosophy, and McKirahan's aim is to interpret it sympathetically, following the lead of the text, rather than imposing contemporary frameworks on it. In addition to treating the theory as a whole, the author uses textual and philological as well as philosophical material to interpret many important but difficult individual passages. A number of issues left obscure by the Aristotelian material are settled by reference to Euclid's geometrical practice in the Elements. To justify this use of Euclid, McKirahan makes a comparative analysis of fundamental features of Euclidian geometry with the corresponding elements of Aristotle's theory. Emerging from that discussion is a more precise and more complex picture of the relation between Aristotle's theory and Greek mathematics--a picture of mutual, rather than one-way, dependence. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Principles and Proofs
Author: Richard D. McKirahan Jr.
Publisher: Princeton University Press
ISBN: 140088716X
Category : Philosophy
Languages : en
Pages : 355
Book Description
By a thorough study of the Posterior Analytics and related Aristotelian texts, Richard McKirahan reconstructs Aristotle's theory of episteme--science. The Posterior Analytics contains the first extensive treatment of the nature and structure of science in the history of philosophy, and McKirahan's aim is to interpret it sympathetically, following the lead of the text, rather than imposing contemporary frameworks on it. In addition to treating the theory as a whole, the author uses textual and philological as well as philosophical material to interpret many important but difficult individual passages. A number of issues left obscure by the Aristotelian material are settled by reference to Euclid's geometrical practice in the Elements. To justify this use of Euclid, McKirahan makes a comparative analysis of fundamental features of Euclidian geometry with the corresponding elements of Aristotle's theory. Emerging from that discussion is a more precise and more complex picture of the relation between Aristotle's theory and Greek mathematics--a picture of mutual, rather than one-way, dependence. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 140088716X
Category : Philosophy
Languages : en
Pages : 355
Book Description
By a thorough study of the Posterior Analytics and related Aristotelian texts, Richard McKirahan reconstructs Aristotle's theory of episteme--science. The Posterior Analytics contains the first extensive treatment of the nature and structure of science in the history of philosophy, and McKirahan's aim is to interpret it sympathetically, following the lead of the text, rather than imposing contemporary frameworks on it. In addition to treating the theory as a whole, the author uses textual and philological as well as philosophical material to interpret many important but difficult individual passages. A number of issues left obscure by the Aristotelian material are settled by reference to Euclid's geometrical practice in the Elements. To justify this use of Euclid, McKirahan makes a comparative analysis of fundamental features of Euclidian geometry with the corresponding elements of Aristotle's theory. Emerging from that discussion is a more precise and more complex picture of the relation between Aristotle's theory and Greek mathematics--a picture of mutual, rather than one-way, dependence. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Proofs from THE BOOK
Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194
Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194
Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Discrete Mathematics
Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
A Guide to Conclusive Proofs for the Principles of Belief
Author: ʻAbd al-Malik ibn ʻAbd Allāh Imām al-Ḥaramayn al-Juwaynī
Publisher: ISBS
ISBN: 9781859641538
Category : Religion
Languages : en
Pages : 300
Book Description
This is a translation of the work known as "al-Irshad" (The Guide), a classic text of Islamic theology. Its author, Iman al-Haramayn al-Juwayni, here sets out systematically what he considers the sure proofs for the principles of any discourse about God.
Publisher: ISBS
ISBN: 9781859641538
Category : Religion
Languages : en
Pages : 300
Book Description
This is a translation of the work known as "al-Irshad" (The Guide), a classic text of Islamic theology. Its author, Iman al-Haramayn al-Juwayni, here sets out systematically what he considers the sure proofs for the principles of any discourse about God.
The Principles of Mathematics
Author: Bertrand Russell
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 565
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 565
Book Description
Conjecture and Proof
Author: Miklos Laczkovich
Publisher: American Mathematical Soc.
ISBN: 1470458322
Category : Mathematics
Languages : en
Pages : 131
Book Description
The Budapest semesters in mathematics were initiated with the aim of offering undergraduate courses that convey the tradition of Hungarian mathematics to English-speaking students. This book is an elaborate version of the course on Conjecture and Proof. It gives miniature introductions to various areas of mathematics by presenting some interesting and important, but easily accessible results and methods. The text contains complete proofs of deep results such as the transcendence of $e$, the Banach-Tarski paradox and the existence of Borel sets of arbitrary (finite) class. One of the purposes is to demonstrate how far one can get from the first principles in just a couple of steps. Prerequisites are kept to a minimum, and any introductory calculus course provides the necessary background for understanding the book. Exercises are included for the benefit of students. However, this book should prove fascinating for any mathematically literate reader.
Publisher: American Mathematical Soc.
ISBN: 1470458322
Category : Mathematics
Languages : en
Pages : 131
Book Description
The Budapest semesters in mathematics were initiated with the aim of offering undergraduate courses that convey the tradition of Hungarian mathematics to English-speaking students. This book is an elaborate version of the course on Conjecture and Proof. It gives miniature introductions to various areas of mathematics by presenting some interesting and important, but easily accessible results and methods. The text contains complete proofs of deep results such as the transcendence of $e$, the Banach-Tarski paradox and the existence of Borel sets of arbitrary (finite) class. One of the purposes is to demonstrate how far one can get from the first principles in just a couple of steps. Prerequisites are kept to a minimum, and any introductory calculus course provides the necessary background for understanding the book. Exercises are included for the benefit of students. However, this book should prove fascinating for any mathematically literate reader.
Principles of Differential Equations
Author: Nelson G. Markley
Publisher: John Wiley & Sons
ISBN: 1118031539
Category : Mathematics
Languages : en
Pages : 354
Book Description
An accessible, practical introduction to the principles of differential equations The field of differential equations is a keystone of scientific knowledge today, with broad applications in mathematics, engineering, physics, and other scientific fields. Encompassing both basic concepts and advanced results, Principles of Differential Equations is the definitive, hands-on introduction professionals and students need in order to gain a strong knowledge base applicable to the many different subfields of differential equations and dynamical systems. Nelson Markley includes essential background from analysis and linear algebra, in a unified approach to ordinary differential equations that underscores how key theoretical ingredients interconnect. Opening with basic existence and uniqueness results, Principles of Differential Equations systematically illuminates the theory, progressing through linear systems to stable manifolds and bifurcation theory. Other vital topics covered include: Basic dynamical systems concepts Constant coefficients Stability The Poincaré return map Smooth vector fields As a comprehensive resource with complete proofs and more than 200 exercises, Principles of Differential Equations is the ideal self-study reference for professionals, and an effective introduction and tutorial for students.
Publisher: John Wiley & Sons
ISBN: 1118031539
Category : Mathematics
Languages : en
Pages : 354
Book Description
An accessible, practical introduction to the principles of differential equations The field of differential equations is a keystone of scientific knowledge today, with broad applications in mathematics, engineering, physics, and other scientific fields. Encompassing both basic concepts and advanced results, Principles of Differential Equations is the definitive, hands-on introduction professionals and students need in order to gain a strong knowledge base applicable to the many different subfields of differential equations and dynamical systems. Nelson Markley includes essential background from analysis and linear algebra, in a unified approach to ordinary differential equations that underscores how key theoretical ingredients interconnect. Opening with basic existence and uniqueness results, Principles of Differential Equations systematically illuminates the theory, progressing through linear systems to stable manifolds and bifurcation theory. Other vital topics covered include: Basic dynamical systems concepts Constant coefficients Stability The Poincaré return map Smooth vector fields As a comprehensive resource with complete proofs and more than 200 exercises, Principles of Differential Equations is the ideal self-study reference for professionals, and an effective introduction and tutorial for students.
Principia Mathematica
Author: Alfred North Whitehead
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 696
Book Description
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 696
Book Description
100% Mathematical Proof
Author: Rowan Garnier
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 332
Book Description
"Proof" has been and remains one of the concepts which characterises mathematics. Covering basic propositional and predicate logic as well as discussing axiom systems and formal proofs, the book seeks to explain what mathematicians understand by proofs and how they are communicated. The authors explore the principle techniques of direct and indirect proof including induction, existence and uniqueness proofs, proof by contradiction, constructive and non-constructive proofs, etc. Many examples from analysis and modern algebra are included. The exceptionally clear style and presentation ensures that the book will be useful and enjoyable to those studying and interested in the notion of mathematical "proof."
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 332
Book Description
"Proof" has been and remains one of the concepts which characterises mathematics. Covering basic propositional and predicate logic as well as discussing axiom systems and formal proofs, the book seeks to explain what mathematicians understand by proofs and how they are communicated. The authors explore the principle techniques of direct and indirect proof including induction, existence and uniqueness proofs, proof by contradiction, constructive and non-constructive proofs, etc. Many examples from analysis and modern algebra are included. The exceptionally clear style and presentation ensures that the book will be useful and enjoyable to those studying and interested in the notion of mathematical "proof."
When Bad Thinking Happens to Good People
Author: Steven Nadler
Publisher: Princeton University Press
ISBN: 0691212767
Category : PHILOSOPHY
Languages : en
Pages : 234
Book Description
"In this book the philosophers Steve Nadler and Lawrence Shapiro will explain why bad thinking happens to good people. Why is it, they ask, that so large a segment of public can go so wrong in both how they come to form the opinions they do and how they fail to appreciate the moral consequences of acting on them."--Publisher's description.
Publisher: Princeton University Press
ISBN: 0691212767
Category : PHILOSOPHY
Languages : en
Pages : 234
Book Description
"In this book the philosophers Steve Nadler and Lawrence Shapiro will explain why bad thinking happens to good people. Why is it, they ask, that so large a segment of public can go so wrong in both how they come to form the opinions they do and how they fail to appreciate the moral consequences of acting on them."--Publisher's description.