Author: V.P. Gupta
Publisher: Academic Press
ISBN: 0128035013
Category : Science
Languages : en
Pages : 480
Book Description
Principles and Applications of Quantum Chemistry offers clear and simple coverage based on the author's extensive teaching at advanced universities around the globe. Where needed, derivations are detailed in an easy-to-follow manner so that you will understand the physical and mathematical aspects of quantum chemistry and molecular electronic structure. Building on this foundation, this book then explores applications, using illustrative examples to demonstrate the use of quantum chemical tools in research problems. Each chapter also uses innovative problems and bibliographic references to guide you, and throughout the book chapters cover important advances in the field including: Density functional theory (DFT) and time-dependent DFT (TD-DFT), characterization of chemical reactions, prediction of molecular geometry, molecular electrostatic potential, and quantum theory of atoms in molecules. - Simplified mathematical content and derivations for reader understanding - Useful overview of advances in the field such as Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) - Accessible level for students and researchers interested in the use of quantum chemistry tools
Principles and Applications of Quantum Chemistry
Author: V.P. Gupta
Publisher: Academic Press
ISBN: 0128035013
Category : Science
Languages : en
Pages : 480
Book Description
Principles and Applications of Quantum Chemistry offers clear and simple coverage based on the author's extensive teaching at advanced universities around the globe. Where needed, derivations are detailed in an easy-to-follow manner so that you will understand the physical and mathematical aspects of quantum chemistry and molecular electronic structure. Building on this foundation, this book then explores applications, using illustrative examples to demonstrate the use of quantum chemical tools in research problems. Each chapter also uses innovative problems and bibliographic references to guide you, and throughout the book chapters cover important advances in the field including: Density functional theory (DFT) and time-dependent DFT (TD-DFT), characterization of chemical reactions, prediction of molecular geometry, molecular electrostatic potential, and quantum theory of atoms in molecules. - Simplified mathematical content and derivations for reader understanding - Useful overview of advances in the field such as Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) - Accessible level for students and researchers interested in the use of quantum chemistry tools
Publisher: Academic Press
ISBN: 0128035013
Category : Science
Languages : en
Pages : 480
Book Description
Principles and Applications of Quantum Chemistry offers clear and simple coverage based on the author's extensive teaching at advanced universities around the globe. Where needed, derivations are detailed in an easy-to-follow manner so that you will understand the physical and mathematical aspects of quantum chemistry and molecular electronic structure. Building on this foundation, this book then explores applications, using illustrative examples to demonstrate the use of quantum chemical tools in research problems. Each chapter also uses innovative problems and bibliographic references to guide you, and throughout the book chapters cover important advances in the field including: Density functional theory (DFT) and time-dependent DFT (TD-DFT), characterization of chemical reactions, prediction of molecular geometry, molecular electrostatic potential, and quantum theory of atoms in molecules. - Simplified mathematical content and derivations for reader understanding - Useful overview of advances in the field such as Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) - Accessible level for students and researchers interested in the use of quantum chemistry tools
Computational Chemistry and Molecular Modeling
Author: K. I. Ramachandran
Publisher: Springer Science & Business Media
ISBN: 3540773045
Category : Science
Languages : en
Pages : 405
Book Description
The gap between introductory level textbooks and highly specialized monographs is filled by this modern textbook. It provides in one comprehensive volume the in-depth theoretical background for molecular modeling and detailed descriptions of the applications in chemistry and related fields like drug design, molecular sciences, biomedical, polymer and materials engineering. Special chapters on basic mathematics and the use of respective software tools are included. Numerous numerical examples, exercises and explanatory illustrations as well as a web site with application tools (http://www.amrita.edu/cen/ccmm) support the students and lecturers.
Publisher: Springer Science & Business Media
ISBN: 3540773045
Category : Science
Languages : en
Pages : 405
Book Description
The gap between introductory level textbooks and highly specialized monographs is filled by this modern textbook. It provides in one comprehensive volume the in-depth theoretical background for molecular modeling and detailed descriptions of the applications in chemistry and related fields like drug design, molecular sciences, biomedical, polymer and materials engineering. Special chapters on basic mathematics and the use of respective software tools are included. Numerous numerical examples, exercises and explanatory illustrations as well as a web site with application tools (http://www.amrita.edu/cen/ccmm) support the students and lecturers.
Quantum Chemistry and Dynamics of Excited States
Author: Leticia González
Publisher: John Wiley & Sons
ISBN: 1119417759
Category : Science
Languages : en
Pages : 52
Book Description
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Publisher: John Wiley & Sons
ISBN: 1119417759
Category : Science
Languages : en
Pages : 52
Book Description
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Introduction to Quantum Mechanics with Applications to Chemistry
Author: Linus Pauling
Publisher: Courier Corporation
ISBN: 0486134938
Category : Science
Languages : en
Pages : 500
Book Description
Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.
Publisher: Courier Corporation
ISBN: 0486134938
Category : Science
Languages : en
Pages : 500
Book Description
Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.
Principles of the Quantum Control of Molecular Processes
Author: Moshe Shapiro
Publisher:
ISBN: 9780471241843
Category : Science
Languages : en
Pages : 354
Book Description
Principles and Applications of Quantum Contro Over the past fifteen years, significant developments have been made in utilizing quantum attributes of light and matter to assume unprecedented control over the dynamics of atomic and molecular systems. This growth reflects a confluence of factors including the maturation of quantum mechanics as a tool for chemistry and physics, the development of new laser devices increasing our ability to manipulate light, and the recognition that coherent laser light can be used to imprint information on atoms and molecules for practical purposes. Written by two of the world’s leading researchers in the field, Principles of the Quantum Control of Molecular Processes offers a systematic introduction to the fundamental principles of coherent control, and to the physics and chemistry necessary to master it Designed as both a resource for self-study and as a graduate textbook, this survey of the subject provides a step-by-step discussion of light-matter interactions along with coverage of such essential topics as: Molecular dynamics and control LI>The dynamics of photodissociation LI>Bimolecular collision processes LI>The control of chirality and asymmetric synthesis LI>Application of control using moderate and strong fields LI>Tuning the system and laser parameters to achieve optimal control LI>Decoherence and methods for countering it P>Both authoritative and comprehensive, this first in-depth treatment of coherent control is destined to become the standard reference in an increasingly influential field PAUL W. BRUMER, PhD, is University Professor–Theoretical Chemical Physics and holds the Roel Buck Chair in Chemical Physics at the University of Toronto. He received his BSc. from Brooklyn College and his PhD from Harvard University. MOSHE SHAPIRO, PhD, is the Jacques Mimran Professor of Chemical Physics at the Weizmann Institute of Science, Rehovot, Israel, and a Professor of Chemistry and Physics at the University of British Columbia. He received his BSc, MSc, and PhD from the Hebrew University of Jerusalem The authors are among the cofounders of the field of coherent control. They have published extensively on this and related subjects in chemical physics, and have received numerous awards and worldwide recognition for their research contributions.
Publisher:
ISBN: 9780471241843
Category : Science
Languages : en
Pages : 354
Book Description
Principles and Applications of Quantum Contro Over the past fifteen years, significant developments have been made in utilizing quantum attributes of light and matter to assume unprecedented control over the dynamics of atomic and molecular systems. This growth reflects a confluence of factors including the maturation of quantum mechanics as a tool for chemistry and physics, the development of new laser devices increasing our ability to manipulate light, and the recognition that coherent laser light can be used to imprint information on atoms and molecules for practical purposes. Written by two of the world’s leading researchers in the field, Principles of the Quantum Control of Molecular Processes offers a systematic introduction to the fundamental principles of coherent control, and to the physics and chemistry necessary to master it Designed as both a resource for self-study and as a graduate textbook, this survey of the subject provides a step-by-step discussion of light-matter interactions along with coverage of such essential topics as: Molecular dynamics and control LI>The dynamics of photodissociation LI>Bimolecular collision processes LI>The control of chirality and asymmetric synthesis LI>Application of control using moderate and strong fields LI>Tuning the system and laser parameters to achieve optimal control LI>Decoherence and methods for countering it P>Both authoritative and comprehensive, this first in-depth treatment of coherent control is destined to become the standard reference in an increasingly influential field PAUL W. BRUMER, PhD, is University Professor–Theoretical Chemical Physics and holds the Roel Buck Chair in Chemical Physics at the University of Toronto. He received his BSc. from Brooklyn College and his PhD from Harvard University. MOSHE SHAPIRO, PhD, is the Jacques Mimran Professor of Chemical Physics at the Weizmann Institute of Science, Rehovot, Israel, and a Professor of Chemistry and Physics at the University of British Columbia. He received his BSc, MSc, and PhD from the Hebrew University of Jerusalem The authors are among the cofounders of the field of coherent control. They have published extensively on this and related subjects in chemical physics, and have received numerous awards and worldwide recognition for their research contributions.
Quantum Chemistry of Solids
Author: Robert A. Evarestov
Publisher: Springer Science & Business Media
ISBN: 3540487484
Category : Science
Languages : en
Pages : 559
Book Description
This book delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of wave-function-based, density-based (DFT) and hybrid hamiltonians. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties.
Publisher: Springer Science & Business Media
ISBN: 3540487484
Category : Science
Languages : en
Pages : 559
Book Description
This book delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of wave-function-based, density-based (DFT) and hybrid hamiltonians. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties.
Quantum Medicinal Chemistry
Author: Paolo Carloni
Publisher: John Wiley & Sons
ISBN: 3527605304
Category : Science
Languages : de
Pages : 294
Book Description
Computational methods are transforming the work of chemical and pharmaceutical laboratories. Increasingly faster and more exact simulation algorithms have made quantum chemistry a valuable tool in the search for active substances. Written by a team of leading international quantum chemists, this book is aimed at both beginners as well as experienced users of quantum chemical methods. All commonly used quantum chemical methods are treated here, including Density Functional Theory, quantum and molecular mechanical approaches. Numerous examples illustrate the use of these methods for dealing with problems in pharmaceutical practice, whether the study of inhibitor binding, identifying the surface load of active substances or deriving molecular descriptors using quantum chemical tools. For anyone striving to stay ahead in this rapidly evolving field.
Publisher: John Wiley & Sons
ISBN: 3527605304
Category : Science
Languages : de
Pages : 294
Book Description
Computational methods are transforming the work of chemical and pharmaceutical laboratories. Increasingly faster and more exact simulation algorithms have made quantum chemistry a valuable tool in the search for active substances. Written by a team of leading international quantum chemists, this book is aimed at both beginners as well as experienced users of quantum chemical methods. All commonly used quantum chemical methods are treated here, including Density Functional Theory, quantum and molecular mechanical approaches. Numerous examples illustrate the use of these methods for dealing with problems in pharmaceutical practice, whether the study of inhibitor binding, identifying the surface load of active substances or deriving molecular descriptors using quantum chemical tools. For anyone striving to stay ahead in this rapidly evolving field.
Quantum Chemistry
Author: John P. Lowe
Publisher: Elsevier
ISBN: 0080515541
Category : Science
Languages : en
Pages : 732
Book Description
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom, many-electron atoms, and principles of quantum mechanics. It then provides thorough treatments of variation and perturbation methods, group theory, ab initio theory, Huckel and extended Huckel methods, qualitative MO theory, and MO theory of periodic systems. Chapters are completed with exercises to facilitate self-study. Solutions to selected exercises are included. - Assumes little mathematical or physical sophistication - Emphasizes understanding of the techniques and results of quantum chemistry - Includes improved coverage of time-dependent phenomena, term symbols, and molecular rotation and vibration - Provides a new chapter on molecular orbital theory of periodic systems - Features new exercise sets with solutions - Includes a helpful new appendix that compiles angular momentum rules from operator algebra
Publisher: Elsevier
ISBN: 0080515541
Category : Science
Languages : en
Pages : 732
Book Description
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom, many-electron atoms, and principles of quantum mechanics. It then provides thorough treatments of variation and perturbation methods, group theory, ab initio theory, Huckel and extended Huckel methods, qualitative MO theory, and MO theory of periodic systems. Chapters are completed with exercises to facilitate self-study. Solutions to selected exercises are included. - Assumes little mathematical or physical sophistication - Emphasizes understanding of the techniques and results of quantum chemistry - Includes improved coverage of time-dependent phenomena, term symbols, and molecular rotation and vibration - Provides a new chapter on molecular orbital theory of periodic systems - Features new exercise sets with solutions - Includes a helpful new appendix that compiles angular momentum rules from operator algebra
Quantum Theory for Chemical Applications
Author: Jochen Autschbach
Publisher: Oxford University Press, USA
ISBN: 0190920807
Category : Science
Languages : en
Pages : 756
Book Description
"Quantum Theory for Chemical Applications (QTCA) Quantum theory, or more specifically, quantum mechanics is endlessly fascinating, curious & strange, and often considered to be difficult to learn. It is true that quantum mechanics is a mathematical theory. Its scope, its predictions, the wisdom we gain from its results, all these become fully clear only in the context of the relevant equations and calculations. But the study of quantum mechanics is definitely worth the effort, and - as I like to tell my students- it is not rocket science"--
Publisher: Oxford University Press, USA
ISBN: 0190920807
Category : Science
Languages : en
Pages : 756
Book Description
"Quantum Theory for Chemical Applications (QTCA) Quantum theory, or more specifically, quantum mechanics is endlessly fascinating, curious & strange, and often considered to be difficult to learn. It is true that quantum mechanics is a mathematical theory. Its scope, its predictions, the wisdom we gain from its results, all these become fully clear only in the context of the relevant equations and calculations. But the study of quantum mechanics is definitely worth the effort, and - as I like to tell my students- it is not rocket science"--
Computational Chemistry
Author: Errol G. Lewars
Publisher: Springer Science & Business Media
ISBN: 0306483912
Category : Science
Languages : en
Pages : 474
Book Description
Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.
Publisher: Springer Science & Business Media
ISBN: 0306483912
Category : Science
Languages : en
Pages : 474
Book Description
Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.