Primer on Optimal Control Theory

Primer on Optimal Control Theory PDF Author: Jason L. Speyer
Publisher: SIAM
ISBN: 0898716942
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
A rigorous introduction to optimal control theory, which will enable engineers and scientists to put the theory into practice.

Primer on Optimal Control Theory

Primer on Optimal Control Theory PDF Author: Jason L. Speyer
Publisher: SIAM
ISBN: 0898716942
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
A rigorous introduction to optimal control theory, which will enable engineers and scientists to put the theory into practice.

A Primer on the Calculus of Variations and Optimal Control Theory

A Primer on the Calculus of Variations and Optimal Control Theory PDF Author: Mike Mesterton-Gibbons
Publisher: American Mathematical Soc.
ISBN: 0821847724
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.

Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory PDF Author: Daniel Liberzon
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control

A Primer on Pontryagin's Principle in Optimal Control

A Primer on Pontryagin's Principle in Optimal Control PDF Author: I. Michael Ross
Publisher:
ISBN: 9780984357116
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
EDITORIAL REVIEW: This book provides a guided tour in introducing optimal control theory from a practitioner's point of view. As in the first edition, Ross takes the contrarian view that it is not necessary to prove Pontryagin's Principle before using it. Using the same philosophy, the second edition expands the ideas over four chapters: In Chapter 1, basic principles related to problem formulation via a structured approach are introduced: What is a state variable? What is a control variable? What is state space? And so on. In Chapter 2, Pontryagin's Principle is introduced using intuitive ideas from everyday life: Like the process of "measuring" a sandwich and how it relates to costates. A vast number of illustrations are used to explain the concepts without going into the minutia of obscure mathematics. Mnemonics are introduced to help a beginner remember the collection of conditions that constitute Pontryagin's Principle. In Chapter 3, several examples are worked out in detail to illustrate a step-by-step process in applying Pontryagin's Principle. Included in this example is Kalman's linear-quadratic optimal control problem. In Chapter 4, a large number of problems from applied mathematics to management science are solved to illustrate how Pontryagin's Principle is used across the disciplines. Included in this chapter are test problems and solutions. The style of the book is easygoing and engaging. The classical calculus of variations is an unnecessary prerequisite for understanding optimal control theory. Ross uses original references to weave an entertaining historical account of various events. Students, particularly beginners, will embark on a minimum-time trajectory to applying Pontryagin's Principle.

Optimal Control of a Double Integrator

Optimal Control of a Double Integrator PDF Author: Arturo Locatelli
Publisher: Springer
ISBN: 3319421263
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book Here

Book Description
This book provides an introductory yet rigorous treatment of Pontryagin’s Maximum Principle and its application to optimal control problems when simple and complex constraints act on state and control variables, the two classes of variable in such problems. The achievements resulting from first-order variational methods are illustrated with reference to a large number of problems that, almost universally, relate to a particular second-order, linear and time-invariant dynamical system, referred to as the double integrator. The book is ideal for students who have some knowledge of the basics of system and control theory and possess the calculus background typically taught in undergraduate curricula in engineering. Optimal control theory, of which the Maximum Principle must be considered a cornerstone, has been very popular ever since the late 1950s. However, the possibly excessive initial enthusiasm engendered by its perceived capability to solve any kind of problem gave way to its equally unjustified rejection when it came to be considered as a purely abstract concept with no real utility. In recent years it has been recognized that the truth lies somewhere between these two extremes, and optimal control has found its (appropriate yet limited) place within any curriculum in which system and control theory plays a significant role.

Practical Methods for Optimal Control and Estimation Using Nonlinear Programming

Practical Methods for Optimal Control and Estimation Using Nonlinear Programming PDF Author: John T. Betts
Publisher: SIAM
ISBN: 0898716888
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
A focused presentation of how sparse optimization methods can be used to solve optimal control and estimation problems.

Optimal Control of Partial Differential Equations

Optimal Control of Partial Differential Equations PDF Author: Fredi Tröltzsch
Publisher: American Mathematical Society
ISBN: 1470476444
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tröltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization.

Optimal Control

Optimal Control PDF Author: Michael Athans
Publisher: Courier Corporation
ISBN: 0486318184
Category : Technology & Engineering
Languages : en
Pages : 900

Get Book Here

Book Description
Geared toward advanced undergraduate and graduate engineering students, this text introduces the theory and applications of optimal control. It serves as a bridge to the technical literature, enabling students to evaluate the implications of theoretical control work, and to judge the merits of papers on the subject. Rather than presenting an exhaustive treatise, Optimal Control offers a detailed introduction that fosters careful thinking and disciplined intuition. It develops the basic mathematical background, with a coherent formulation of the control problem and discussions of the necessary conditions for optimality based on the maximum principle of Pontryagin. In-depth examinations cover applications of the theory to minimum time, minimum fuel, and to quadratic criteria problems. The structure, properties, and engineering realizations of several optimal feedback control systems also receive attention. Special features include numerous specific problems, carried through to engineering realization in block diagram form. The text treats almost all current examples of control problems that permit analytic solutions, and its unified approach makes frequent use of geometric ideas to encourage students' intuition.

Stochastic Controls

Stochastic Controls PDF Author: Jiongmin Yong
Publisher: Springer Science & Business Media
ISBN: 1461214661
Category : Mathematics
Languages : en
Pages : 459

Get Book Here

Book Description
As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

Feedback Control Theory for Engineers

Feedback Control Theory for Engineers PDF Author: P. Atkinson
Publisher: Springer Science & Business Media
ISBN: 1468474537
Category : Technology & Engineering
Languages : en
Pages : 445

Get Book Here

Book Description
Textbooks in the field of control engineering have, in the main, been written for electrical engineers and the standard of the mathematics used has been relatively high. The purpose of this work is to provide a course of study in elementary control theory which is self-contained and suitable for students of all branches of engineering and of applied physics. The book assumes that the student has a knowledge of mathematics of A-level or 0-2 level standard only. All other necessary pure and applied mathematics is covered for reference purposes in chapters 2-6. As a students' textbook it contains many fully worked numerical examples and sets of examples are provided at the end of all chapters except the first. The answers to these examples are given at the end of the book. The book covers the majority of the control theory likely to be encountered on H. N. C. , H. N. D. and degree courses in electrical, mechanical, chemical and production engineering and in applied physics. It will also provide a primer in specialist courses in instru mentation and control engineering at undergraduate and post graduate level. Furthermore, it covers much of the control theory encountered in the graduateship examinations of the professional institutions, for example I. E. E. Part III (Advanced Electrical Engineer ing and Instrumentation and Control), I. E. R. E. Part 5 (Control Engineering) and the new c. E. I. Part 2 (Mechanics of Machines and Systems and Control Engineering).