Preparation of Diamond-like Carbon and Boron Nitride Films by High-intensity Pulsed Ion Beam Deposition

Preparation of Diamond-like Carbon and Boron Nitride Films by High-intensity Pulsed Ion Beam Deposition PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Preparation of Diamond-like Carbon and Boron Nitirde Films by High-intensity Pulsed Ion Beam Deposition

Preparation of Diamond-like Carbon and Boron Nitirde Films by High-intensity Pulsed Ion Beam Deposition PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Intense ion beams (300-keV C, O, and H+, 20--30 kA, 50 to 400-ns pulsewidth, up to 0.3-Hz repetition rate) were used to prepare diamond-like carbon (DLC) and boron nitride (BN) films. Deposition rates of up to 25"5 nm/pulse were obtained with instantaneous rates exceeding 1 mm/s. Most films were uniform, light brown, translucent, and nonporous with some micron-size particulates. Raman and parallel electron energy loss spectroscopy indicated the presence of DLC. The films possessed favorable electron field-emission characteristics desirable for cold-cathode displays. Transmission electron microscopy (TEM) and transmission electron diffraction (TED) revealed that the C films contained diamond crystals with 25 to 125-nm grain size. BN films were composed of hexagonal, cubic and wurtzite phases.

Synthesis and Characterization of Diamond-like Carbon Coatings Deposited by Plasma Source Ion Implantation and Conventional Ion Beam Assisted Deposition Processes

Synthesis and Characterization of Diamond-like Carbon Coatings Deposited by Plasma Source Ion Implantation and Conventional Ion Beam Assisted Deposition Processes PDF Author: Brian M. Stout
Publisher:
ISBN:
Category :
Languages : en
Pages : 114

Get Book Here

Book Description
Diamond-like carbon coatings produced by Plasma Source Ion Implantation (PSII) and beamline Ion Beam Assisted Deposition (IBAD) were synthesized and studied. Gas pressure and electrical current were used as variables to design four independent PSII test sets. Beamline IBAD samples were produced with a pre-optimized set of parameters. Profilometry measurements showed the films to have thicknesses between 1.44 +/- 09 and 1.64 +/- 04 microns and to possess very low roughness averages, ranging from 14 +/- 3 to 28 +/- 3 nm, which correlate with substrate surface roughness. Atomic Force Microscopy revealed that diamond-like carbon crystal sizes varied significantly with chamber pressure. Crystals were generally spherical in shape suggesting that films were highly amorphous. Microhardness and nanohardness test results showed the hardest films to be greater than 3 times the hardness of untreated steel. The elastic modulus of the films, measured during the nanohardness test, was directly related to film hardness. Fretting wear and Pin-on-Disk tests were performed to quantitatively assess the ability of films to resist wear. Fretting wear tests showed a dramatic decrease in friction for diamond-like carbon films with friction levels ranging from 10% to 30% of that of untreated steel. Pin-on-Disk tests revealed a significant improvement in wear resistance prior to stylus penetration into the substrate.

Applications of Diamond Films and Related Materials

Applications of Diamond Films and Related Materials PDF Author: Y. Tzeng
Publisher: Elsevier
ISBN: 1483291243
Category : Science
Languages : en
Pages : 903

Get Book Here

Book Description
An intensifying interest from the scientific, technical, and industrial community in the new diamond technology can be attested to by the wide range of contributions in this proceedings volume. The papers discuss topics such as the applications of diamond films and related wide bandgap semiconductors and superhard materials. These materials are rapidly becoming economically significant due to their combination of superior properties: great hardness, high thermal conductivity, chemical inertness, high stiffness, high carrier mobilities, etc. Initial commercial products employing the new diamond technology are already on the market. These include diamond loudspeakers, diamond X-ray windows, diamond bonders, diamond cutting tools, and heads for magnetic disks coated with diamond-like carbon. The developments reported in this volume are important not only in terms of their own markets, but, also because they are expected to enable a wide range of other new products and production methods.

Investigation of Reactively Sputtered Boron Carbon Nitride Thin Films

Investigation of Reactively Sputtered Boron Carbon Nitride Thin Films PDF Author: Vinit O. Todi
Publisher:
ISBN:
Category : Boron nitride
Languages : en
Pages : 130

Get Book Here

Book Description
Research efforts have been focused in the development of hard and wear resistant coatings over the last few decades. These protective coatings find applications in the industry such as cutting tools, automobile and machine part etc. Various ceramic thin films like TiN, TiAlN, TiC, SiC and diamond-like carbon (DLC) are examples of the films used in above applications. However, increasing technological and industrial demands request thin films with more complicated and advanced properties. For this purpose, B-C-N ternary system which is based on carbon, boron and nitrogen which exhibit exceptional properties and attract much attention from mechanical, optical and electronic perspectives. Also, boron carbonitride (BCN) thin films contains interesting phases such as diamond, cubic BN (c-BN), hexagonal boron nitride (h-BN), B4C, [greek lower case letter beta]-C3N4. Attempts have been made to form a material with semiconducting properties between the semi metallic graphite and the insulating h-BN, or to combine the cubic phases of diamond and c-BN (BC2N heterodiamond) in order to merge the higher hardness of the diamond with the advantages of c-BN, in particular with its better chemical resistance to iron and oxygen at elevated temperatures. New microprocessor CMOS technologies require interlayer dielectric materials with lower dielectric constant than those used in current technologies to meet RC delay goals and to minimize cross-talk. Silicon oxide or fluorinated silicon oxide (SiOF) materials having dielectric constant in the range of 3.6 to 4 have been used for many technology nodes. In order to meet the aggressive RC delay goals, new technologies require dielectric materials with K[less than]3. BCN shows promise as a low dielectric constant material with good mechanical strength suitable to be used in newer CMOS technologies. For optical applications, the deposition of BCN coatings on polymers is a promising method for protecting the polymer surface against wear and scratching. BCN films have high optical transparency and thus can be used as mask substrates for X-ray lithography. Most of the efforts from different researchers were focused to deposit cubic boron nitride and boron carbide films. Several methods of preparing boron carbon nitride films have been reported, such as chemical vapor deposition (CVD), plasma assisted CVD, pulsed laser ablation and ion beam deposition. Very limited studies could be found focusing on the effect of nitrogen incorporation into boron carbide structure by sputtering. In this work, the deposition and characterization of amorphous thin films of boron carbon nitride (BCN) is reported. The BCN thin films were deposited by radio frequency (rf) magnetron sputtering system. The BCN films were deposited by sputtering from a high purity B4C target with the incorporation of nitrogen gas in the sputtering ambient. Films of different compositions were deposited by varying the ratios of argon and nitrogen gas in the sputtering ambient. Investigation of the oxidation kinetics of these materials was performed to study high temperature compatibility of the material. Surface characterization of the deposited films was performed using X-ray photoelectron spectroscopy and optical profilometry. Studies reveal that the chemical state of the films is highly sensitive to nitrogen flow ratios during sputtering. Surface analysis shows that smooth and uniform BCN films can be produced using this technique. Carbon and nitrogen content in the films seem to be sensitive to annealing temperatures. However depth profile studies reveal certain stoichiometric compositions to be stable after high temperature anneal up to 700°C. Electrical and optical characteristics are also investigated with interesting results. The optical band gap of the films ranged from 2.0 eV - 3.1 eV and increased with N2/Ar gas flow ratio except at the highest ratio. The optical band gap showed an increasing trend when annealed at higher temperatures. The effect of deposition temperature on the optical and chemical compositions of the BCN films was also studied. The band gap increased with the deposition temperature and the films deposited at 500°C had the highest band gap. Dielectric constant was calculated from the Capacitance-Voltage curves obtained for the MOS structures with BCN as the insulating material. Aluminum was used as the top electrode and the substrate was p-type Si. Effect of N2/Ar gas flow ratio and annealing on the values of dielectric constant was studied and the dielectric constant of 2.5 was obtained for the annealed BCN films. This by far is the lowest value of dielectric constant reported for BCN film deposited by sputtering. Lastly, the future research work on the BCN films that will be carried out as a part of the dissertation is proposed.

Pulsed Laser Deposition of Diamond-like-carbon and Boron Nitride Thin Films

Pulsed Laser Deposition of Diamond-like-carbon and Boron Nitride Thin Films PDF Author: Fan Qian
Publisher:
ISBN:
Category :
Languages : en
Pages : 194

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994

Get Book Here

Book Description


Metallurgical Coatings and Thin Films 1991

Metallurgical Coatings and Thin Films 1991 PDF Author: G.E. McGuire
Publisher: Elsevier
ISBN: 0444599932
Category : Technology & Engineering
Languages : en
Pages : 587

Get Book Here

Book Description
The contributions in this two-volume set represent the work of over two hundred international researchers from universities, government laboratories and industry, with diverse backgrounds and interests in a wide range of coatings and thin film processes. The two hundred and six papers attest to the fact that Metallurgical Coatings is a rapidly growing field attracting experts from the large materials, scientific and technical community. The papers will be a useful and dynamic tool for those wishing to increase their knowledge on metallurgical coatings, as well as providing a guide to recent literature in this field.

Ceramic Abstracts

Ceramic Abstracts PDF Author:
Publisher:
ISBN:
Category : Ceramics
Languages : en
Pages : 250

Get Book Here

Book Description


Estampes, dessins anciens et du XIX.e siècle

Estampes, dessins anciens et du XIX.e siècle PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Get Book Here

Book Description