Preparation, Characterization, and Reactivity of Ruthenium Protic N-heterocyclic Carbene Complexes

Preparation, Characterization, and Reactivity of Ruthenium Protic N-heterocyclic Carbene Complexes PDF Author: Sarah Elizabeth Flowers
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Get Book Here

Book Description
As carbon dioxide levels continue to rise in our atmosphere, scientific interest has peaked around the capture and utilization of CO2. Not only does CO2¬¬ have the potential to be used as a C1 building block for the production of value added chemicals, but CO2 also has the potential to be used as a carbon neutral hydrogen storage material in the form of formic acid. Although catalysts for CO2 reduction exist, many of these catalysts require the use of high temperatures and pressures and are not stable for prolonged exposure to the reaction conditions. Therefore, the challenge of making robust catalysts for CO2 hydrogenation that can operate under mild conditions with high activity remains outstanding. With the goal of generating a robust and highly active CO2 hydrogenation catalyst in mind, this thesis describes the fundamental metalation chemistry of a novel tripodal bis(protic N-Heterocyclic carbene)-phosphine ligand with ruthenium precursors and the reactivity of the resulting organometallic complexes with CO2. Chapter 1 provides a brief overview of CO2¬ in the earth’s atmosphere, a glimpse at CO2 hydrogenation chemistry, and an introduction to traditional and protic N-heterocyclic carbene (PNHC) chemistry. Chapter 2 describes the synthesis and characterization of PNHC Ru complexes utilizing [Cp*RuCl]4 as the ruthenium precursor. Chapter 3 investigates the coordination chemistry and synthesis of PNHC Ru complexes stemming from [(Arene)Ru] precursors. Chapter 4 describes both stoichiometric and catalytic reactivity studies of complexes synthesized in Chapters 2 and 3 with CO2. Finally, Chapter 5 dives into an entirely new subject and discusses the crystallographic structure determination of an unprecedented In¬¬37P20¬ nanocluster.

Preparation, Characterization, and Reactivity of Ruthenium Protic N-heterocyclic Carbene Complexes

Preparation, Characterization, and Reactivity of Ruthenium Protic N-heterocyclic Carbene Complexes PDF Author: Sarah Elizabeth Flowers
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Get Book Here

Book Description
As carbon dioxide levels continue to rise in our atmosphere, scientific interest has peaked around the capture and utilization of CO2. Not only does CO2¬¬ have the potential to be used as a C1 building block for the production of value added chemicals, but CO2 also has the potential to be used as a carbon neutral hydrogen storage material in the form of formic acid. Although catalysts for CO2 reduction exist, many of these catalysts require the use of high temperatures and pressures and are not stable for prolonged exposure to the reaction conditions. Therefore, the challenge of making robust catalysts for CO2 hydrogenation that can operate under mild conditions with high activity remains outstanding. With the goal of generating a robust and highly active CO2 hydrogenation catalyst in mind, this thesis describes the fundamental metalation chemistry of a novel tripodal bis(protic N-Heterocyclic carbene)-phosphine ligand with ruthenium precursors and the reactivity of the resulting organometallic complexes with CO2. Chapter 1 provides a brief overview of CO2¬ in the earth’s atmosphere, a glimpse at CO2 hydrogenation chemistry, and an introduction to traditional and protic N-heterocyclic carbene (PNHC) chemistry. Chapter 2 describes the synthesis and characterization of PNHC Ru complexes utilizing [Cp*RuCl]4 as the ruthenium precursor. Chapter 3 investigates the coordination chemistry and synthesis of PNHC Ru complexes stemming from [(Arene)Ru] precursors. Chapter 4 describes both stoichiometric and catalytic reactivity studies of complexes synthesized in Chapters 2 and 3 with CO2. Finally, Chapter 5 dives into an entirely new subject and discusses the crystallographic structure determination of an unprecedented In¬¬37P20¬ nanocluster.

Functionalized N-heterocyclic Carbene Complexes of Iridium and Ruthenium

Functionalized N-heterocyclic Carbene Complexes of Iridium and Ruthenium PDF Author: Mario Johannes Bitzer
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Synthesis and Catalytic Reactivity of Ruthenium and Rhodium N-alkyl Substituted N-heterocyclic Carbene Complexes

Synthesis and Catalytic Reactivity of Ruthenium and Rhodium N-alkyl Substituted N-heterocyclic Carbene Complexes PDF Author: Nicola Bramananthan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Half-sandwich Complexes of Ruthenium Supported by N-Heterocyclic Carbene Ligands

Half-sandwich Complexes of Ruthenium Supported by N-Heterocyclic Carbene Ligands PDF Author: Van Hung Mai
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis presents the preparation and catalytic reactivity of novel half-sandwich ruthenium complexes supported by N-Heterocyclic Carbene (NHC) ligands. The cationic half-sandwich ruthenium complexes [Cp(IPr)Ru(CH3CN)2]+ show interesting reactivities toward the transfer hydrogenation of different unsaturated substrates, such as ketones, olefins, N-heterocycles, and nitriles. Kinetic studies disclose that a neutral trishydride ruthenium complex is actually involved in the catalytic cycle, playing the role as a resting state. Further investigations on the sub-class of trishydride ruthenium complexes bearing NHC ligands (Cp'(NHC)RuH3) reveal that these complexes have an unusual and great catalytic performance toward the hydrodefluorination (HDF) of fluorinated aromatic and aliphatic compounds. The combined kinetic studies, cross-over experiments and rate law analysis suggest an unusual mechanistic pathway for the Cp*(IPr)RuH3 catalyzed HDF. This study is one of the rare examples where isopropanol is employed as a reducing agent for the metal-mediated HDF reaction. A class of silyl dihydride ruthenium complexes, derived from Cp(IPr)RuH3 are prepared. These silyl hydrido derivatives are great compounds for the study of the inter ligand hypervalent interaction (IHI), an interesting phenomenon for many non-classical silane complexes. This study also suggests that the replacement of phosphines by their isolobally analogous NHC ligands result in stronger IHI interactions in the corresponding compounds. Another type of non-classical interaction was systematically scrutinized in a ii series of new cationic and neutral silane sigma complexes of ruthenium bearing different silyl moieties. These new NHC-supported ruthenium complexes allow for direct comparation with the known phosphine analogues, which reveals interplay of steric and electronic factors on the extent of Si-H complexation to metal and the extent of additional interligand interactions between Ru-Cl and chlorosilane ligand. Finally, new trishydride ruthenium complexes bearing NHC ligands (Cp'(NHC)RuH3) catalyze the H/D exchange reaction of various N-heterocycle substrates; their catalytic performance can be considered as one of the mildest, and most efficient approaches.

CO2 Hydrogenation Catalysis

CO2 Hydrogenation Catalysis PDF Author: Yuichiro Himeda
Publisher: John Wiley & Sons
ISBN: 3527346635
Category : Technology & Engineering
Languages : en
Pages : 322

Get Book Here

Book Description
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.

Synthesis and Reactivity of N-heterocyclic Carbene Stabilised Ruthenium and Rhodium Hydride Complexes

Synthesis and Reactivity of N-heterocyclic Carbene Stabilised Ruthenium and Rhodium Hydride Complexes PDF Author: Susan Rachel Douglas
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Synthesis, Characterization, and Reactivity of Ruthenium Phosphine and Rhodium Heterobimetallic P-N-P- Complexes

Synthesis, Characterization, and Reactivity of Ruthenium Phosphine and Rhodium Heterobimetallic P-N-P- Complexes PDF Author: Robert John McNair
Publisher:
ISBN:
Category :
Languages : en
Pages : 502

Get Book Here

Book Description


Nanoparticles in Catalysis

Nanoparticles in Catalysis PDF Author: Karine Philippot
Publisher: John Wiley & Sons
ISBN: 3527346074
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book Here

Book Description
Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.

Chemistry of Iron

Chemistry of Iron PDF Author: J. Silver
Publisher: Springer Science & Business Media
ISBN: 9401121400
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description
This book is designed to be of use to the reader in two different ways. First, it is intended to provide a general introduction to all aspects of iron chemistry for readers from a variety of different scientific backgrounds. It has been written at a level suitable for use by graduates and advanced undergraduates in chemistry and biochemistry, and graduates in physics, geology, materials science, metallurgy and biology. It is not designed to be a dictionary of iron compounds but rather to provide each user with the necessary tools and background to pursue their ,individual interests in the wide areas that are influenced by the chemistry of iron. To achieve this goal each chapter has been written by a contemporary expert active in the subject so that the reader will benefit from their individual insight. Although it is generally assumed that the reader will have an understanding of bonding theories and general chemistry, the book is well referenced so that any deficiencies in the reader's background can be addressed. The book was also designed as a general reference book for initial pointers into a scientific literature that is growing steadily as the understanding and uses of this astonishingly versatile element continue to develop. To meet this aim the book attempts some coverage of all aspects of the chemistry of iron, not only outlining what understanding has been achieved to date but also identifying targets to be aimed at in the future.

Ruthenium-N-Heterocyclic Carbene and Ruthenium Acetylide Complexes Supported by Macrocyclic Porphyrin Or Tetradentate Schiff Base Ligands

Ruthenium-N-Heterocyclic Carbene and Ruthenium Acetylide Complexes Supported by Macrocyclic Porphyrin Or Tetradentate Schiff Base Ligands PDF Author: Ka-Ho Chan
Publisher: Open Dissertation Press
ISBN: 9781361379714
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation, "Ruthenium-N-heterocyclic Carbene and Ruthenium Acetylide Complexes Supported by Macrocyclic Porphyrin or Tetradentate Schiff Base Ligands: Synthesis, Structure and Catalytic Applications" by Ka-ho, Chan, 陳嘉豪, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled RUTHENIUM-N-HETEROCYCLIC CARBENE AND RUTHENIUM ACETYLIDE COMPLEXES SUPPORTED BY MACROCYCLIC PORPHYRIN OR TETRADENTATE SCHIFF BASE LIGANDS: SYNTHESIS, STRUCTURE AND CATALYTIC APPLICATIONS Submitted by Chan Ka Ho for the degree of Doctor of Philosophy at The University of Hong Kong in March 2015 Transition metal-catalyzed C-C and C-N bond formation reactions are important transformations in synthetic organic chemistry. In the endeavor of this thesis to develop robust/versatile catalysts for these reactions, the trans effect imposed by N-heterocyclic carbene (NHC) and acetylide ligand onto ruthenium complexes supported by macrocyclic porphyrin or tetradentate Schiff-base ligands was studied. The catalytic activity of these novel ruthenium complexes towards carbene and/or nitrene transfer and insertion reactions was also explored. II A series of bis(NHC)ruthenium(II) porphyrin complexes [Ru (Por)(NHC) ] were synthesized by deprotonation of imidazolium salt using a strong base. These complexes displayed unprecedentedly high catalytic activity towards carbene/nitrene transfer and insertion reactions, including alkene cyclopropanation and aziridination, carbene C-H, S-H, N-H and O-H insertions, and nitrene C-H insertion with product -1 turnover frequency up to 1950 min . Carbene modification of N-terminus of peptide o II at 37 C was achieved. Chiral [Ru (D -Por)(NHC) ] catalyst led to highly 4 2 enantioselective carbene/nitrene transfer and insertion reactions with up to 98% ee. DFT calculations revealed that the strong σ-donor strength of trans axial NHC ligand stabilizes the formation of metal-carbene and metal-nitrene intermediate from decomposition of diazo compounds and organic azides, which is crucial for the transition metal-catalyzed oxidative C-C and C-N bond formation reactions to proceed under mild reaction conditions. II A series of ruthenium Schiff-base complexes cis-β-[Ru (Schiff-base)(CO) ] were synthesized and characterized. These complexes showed high catalytic activity towards enantioselective cyclopropanation, carbene C-H and Si-H bond insertions. II t The cis-[Ru (2-CPh -4- Bu-Schiff-base)(CO) ]-catalyzed intermolecular 3 2 cyclopropanation of styrene with EDA in CH Cl afforded desired cyclopropane 2 2 product in 90% isolated yield and 95% ee with a product turnover number of 9000. Excellent trans- and high enantioselectivity were observed with wide substrate scope, including conjugated, electron-rich, electron-deficient and aliphatic terminal alkenes. Carbene C-H and Si-H insertion reactions proceeded smoothly with II t cis-[Ru (2-CPh -4- Bu-Schiff-base)(CO) ] as catalyst, giving the desired products in 3 2 82-97% yields with excellent enantioselectivity (up to 99% ee). The same complex was also catalytically active towards intramolecular cyclopropanation and intramolecular alkyl carbene sp C-H bond insertion to give cis-products with up to 99:1 cis: trans ratio and with excellent enantioselectivities (up to 98% ee). DFT calculations on the intermolecular cyclopropanation catalyzed by II cis-β-[Ru (Schiff-base)(CO) ] revealed that among the ruthenium-carbene intermediates possibly involved in the reactions, the cis-β species are more stable than their trans isomer with