Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Antiques & Collectibles
Languages : en
Pages : 15
Book Description
The newly introduced theories, proposed as extensions of the fuzzy theory, such as the Neutrosophic, Pythagorean, Spherical, Picture, Cubic theories, and their numerous hybrid forms, are criticized by the authors of [1]. In this paper we respond to their critics with respect to the neutrosophic theories and show that the DST, that they want to replace the A-IFS with, has many flaws. Their misunderstanding, with respect to the partial and total independence of the neutrosophic components, is that in the framework of the neutrosophic theories we deal with a MultiVariate Truth-Value (truth upon many independent random variables) as in our real-life world, not with a UniVariate Truth-Value (truth upon only one random variable) as they believe. About the membership degrees outside of the interval [0, 1], which are now in the arXiv and HAL mainstream, it is normal that somebody who over-works (works overtime) to have an over-membership (i.e., membership degree above 1) to be distinguished from those who do not work overtime (whose membership degree is between 0 and 1). And, similarly, a negative employee (that who does only damages to the company) to have a negative membership (i.e., membership degree below 0) in order to distinguish him from the positive employees (those whose membership degree is above 0). There are elementary practical applications in this paper that allow us to think out of box (in this case the box is the interval [0, 1]).
Practical Applications of the Independent Neutrosophic Components and of the Neutrosophic Offset Components
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Antiques & Collectibles
Languages : en
Pages : 15
Book Description
The newly introduced theories, proposed as extensions of the fuzzy theory, such as the Neutrosophic, Pythagorean, Spherical, Picture, Cubic theories, and their numerous hybrid forms, are criticized by the authors of [1]. In this paper we respond to their critics with respect to the neutrosophic theories and show that the DST, that they want to replace the A-IFS with, has many flaws. Their misunderstanding, with respect to the partial and total independence of the neutrosophic components, is that in the framework of the neutrosophic theories we deal with a MultiVariate Truth-Value (truth upon many independent random variables) as in our real-life world, not with a UniVariate Truth-Value (truth upon only one random variable) as they believe. About the membership degrees outside of the interval [0, 1], which are now in the arXiv and HAL mainstream, it is normal that somebody who over-works (works overtime) to have an over-membership (i.e., membership degree above 1) to be distinguished from those who do not work overtime (whose membership degree is between 0 and 1). And, similarly, a negative employee (that who does only damages to the company) to have a negative membership (i.e., membership degree below 0) in order to distinguish him from the positive employees (those whose membership degree is above 0). There are elementary practical applications in this paper that allow us to think out of box (in this case the box is the interval [0, 1]).
Publisher: Infinite Study
ISBN:
Category : Antiques & Collectibles
Languages : en
Pages : 15
Book Description
The newly introduced theories, proposed as extensions of the fuzzy theory, such as the Neutrosophic, Pythagorean, Spherical, Picture, Cubic theories, and their numerous hybrid forms, are criticized by the authors of [1]. In this paper we respond to their critics with respect to the neutrosophic theories and show that the DST, that they want to replace the A-IFS with, has many flaws. Their misunderstanding, with respect to the partial and total independence of the neutrosophic components, is that in the framework of the neutrosophic theories we deal with a MultiVariate Truth-Value (truth upon many independent random variables) as in our real-life world, not with a UniVariate Truth-Value (truth upon only one random variable) as they believe. About the membership degrees outside of the interval [0, 1], which are now in the arXiv and HAL mainstream, it is normal that somebody who over-works (works overtime) to have an over-membership (i.e., membership degree above 1) to be distinguished from those who do not work overtime (whose membership degree is between 0 and 1). And, similarly, a negative employee (that who does only damages to the company) to have a negative membership (i.e., membership degree below 0) in order to distinguish him from the positive employees (those whose membership degree is above 0). There are elementary practical applications in this paper that allow us to think out of box (in this case the box is the interval [0, 1]).
Collected Papers. Volume XII
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 1006
Book Description
This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 1006
Book Description
This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.
Neutrosophic Sets and Systems, Vol. 47, 2021
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Antiques & Collectibles
Languages : en
Pages : 654
Book Description
Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.
Publisher: Infinite Study
ISBN:
Category : Antiques & Collectibles
Languages : en
Pages : 654
Book Description
Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.
Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 1599734729
Category : Neutrosophic logic
Languages : en
Pages : 170
Book Description
Neutrosophic Over-/Under-/Off-Set and -Logic were defined for the first time by Smarandache in 1995 and published in 2007. They are totally different from other sets/logics/probabilities. He extended the neutrosophic set respectively to Neutrosophic Overset {when some neutrosophic component is > 1}, Neutrosophic Underset {when some neutrosophic component is < 0}, and to Neutrosophic Offset {when some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic component > 1 and other neutrosophic component < 0}. This is no surprise with respect to the classical fuzzy set/logic, intuitionistic fuzzy set/logic, or classical/imprecise probability, where the values are not allowed outside the interval [0, 1], since our real-world has numerous examples and applications of over-/under-/off-neutrosophic components. Example of Neutrosophic Offset. In a given company a full-time employer works 40 hours per week. Let’s consider the last week period. Helen worked part-time, only 30 hours, and the other 10 hours she was absent without payment; hence, her membership degree was 30/40 = 0.75 < 1. John worked full-time, 40 hours, so he had the membership degree 40/40 = 1, with respect to this company. But George worked overtime 5 hours, so his membership degree was (40+5)/40 = 45/40 = 1.125 > 1. Thus, we need to make distinction between employees who work overtime, and those who work full-time or part-time. That’s why we need to associate a degree of membership strictly greater than 1 to the overtime workers. Now, another employee, Jane, was absent without pay for the whole week, so her degree of membership was 0/40 = 0. Yet, Richard, who was also hired as a full-time, not only didn’t come to work last week at all (0 worked hours), but he produced, by accidentally starting a devastating fire, much damage to the company, which was estimated at a value half of his salary (i.e. as he would have gotten for working 20 hours that week). Therefore, his membership degree has to be less that Jane’s (since Jane produced no damage). Whence, Richard’s degree of membership, with respect to this company, was - 20/40 = - 0.50 < 0. Consequently, we need to make distinction between employees who produce damage, and those who produce profit, or produce neither damage no profit to the company. Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to take them into consideration. Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were extended to respectively Neutrosophic Over-/Under-/Off-Logic, -Measure, -Probability, -Statistics etc. [Smarandache, 2007]. Keywords: Neutrosophic Overset, Neutrosophic Underset, Neutrosophic Offset; Neutrosophic Overlogic, Neutrosophic Underlogic, Neutrosophic Offlogic; Neutrosophic Overmeasure, Neutrosophic Undermeasure, Neutrosophic Offmeasure; Neutrosophic Overprobability, Neutrosophic Underprobability, Neutrosophic Offprobability; Neutrosophic Overstatistics, Neutrosophic Understatistics, Neutrosophic Offstatistics, etc.
Publisher: Infinite Study
ISBN: 1599734729
Category : Neutrosophic logic
Languages : en
Pages : 170
Book Description
Neutrosophic Over-/Under-/Off-Set and -Logic were defined for the first time by Smarandache in 1995 and published in 2007. They are totally different from other sets/logics/probabilities. He extended the neutrosophic set respectively to Neutrosophic Overset {when some neutrosophic component is > 1}, Neutrosophic Underset {when some neutrosophic component is < 0}, and to Neutrosophic Offset {when some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic component > 1 and other neutrosophic component < 0}. This is no surprise with respect to the classical fuzzy set/logic, intuitionistic fuzzy set/logic, or classical/imprecise probability, where the values are not allowed outside the interval [0, 1], since our real-world has numerous examples and applications of over-/under-/off-neutrosophic components. Example of Neutrosophic Offset. In a given company a full-time employer works 40 hours per week. Let’s consider the last week period. Helen worked part-time, only 30 hours, and the other 10 hours she was absent without payment; hence, her membership degree was 30/40 = 0.75 < 1. John worked full-time, 40 hours, so he had the membership degree 40/40 = 1, with respect to this company. But George worked overtime 5 hours, so his membership degree was (40+5)/40 = 45/40 = 1.125 > 1. Thus, we need to make distinction between employees who work overtime, and those who work full-time or part-time. That’s why we need to associate a degree of membership strictly greater than 1 to the overtime workers. Now, another employee, Jane, was absent without pay for the whole week, so her degree of membership was 0/40 = 0. Yet, Richard, who was also hired as a full-time, not only didn’t come to work last week at all (0 worked hours), but he produced, by accidentally starting a devastating fire, much damage to the company, which was estimated at a value half of his salary (i.e. as he would have gotten for working 20 hours that week). Therefore, his membership degree has to be less that Jane’s (since Jane produced no damage). Whence, Richard’s degree of membership, with respect to this company, was - 20/40 = - 0.50 < 0. Consequently, we need to make distinction between employees who produce damage, and those who produce profit, or produce neither damage no profit to the company. Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to take them into consideration. Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were extended to respectively Neutrosophic Over-/Under-/Off-Logic, -Measure, -Probability, -Statistics etc. [Smarandache, 2007]. Keywords: Neutrosophic Overset, Neutrosophic Underset, Neutrosophic Offset; Neutrosophic Overlogic, Neutrosophic Underlogic, Neutrosophic Offlogic; Neutrosophic Overmeasure, Neutrosophic Undermeasure, Neutrosophic Offmeasure; Neutrosophic Overprobability, Neutrosophic Underprobability, Neutrosophic Offprobability; Neutrosophic Overstatistics, Neutrosophic Understatistics, Neutrosophic Offstatistics, etc.
Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set, Spherical Fuzzy Set, and q-Rung Orthopair Fuzzy Set, while Neutrosophication is a Generalization of Regret Theory, Grey System Theory, and Three-Ways Decision (revisited)
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 31
Book Description
In this paper, we prove that Neutrosophic Set (NS) is an extension of Intuitionistic Fuzzy Set (IFS) no matter if the sum of neutrosophic components is <1, or >1, or =1. For the case when the sum of components is 1 (as in IFS), after applying the neutrosophic aggregation operators, one gets a different result than applying the intuitionistic fuzzy operators, since the intuitionistic fuzzy operators ignore the indeterminacy, while the neutrosophic aggregation operators take into consideration the indeterminacy at the same level as truth-membership and falsehood-nonmembership are taken.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 31
Book Description
In this paper, we prove that Neutrosophic Set (NS) is an extension of Intuitionistic Fuzzy Set (IFS) no matter if the sum of neutrosophic components is <1, or >1, or =1. For the case when the sum of components is 1 (as in IFS), after applying the neutrosophic aggregation operators, one gets a different result than applying the intuitionistic fuzzy operators, since the intuitionistic fuzzy operators ignore the indeterminacy, while the neutrosophic aggregation operators take into consideration the indeterminacy at the same level as truth-membership and falsehood-nonmembership are taken.
Neutrosophy
Author: Florentin Smarandache
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 110
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 110
Book Description
Neutrosophic Set - A Generalization of The Intuitionistic Fuzzy Set
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 10
Book Description
In this paper one generalizes the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS). Many examples are presented. Distinctions between NS and IFS are underlined.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 10
Book Description
In this paper one generalizes the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS). Many examples are presented. Distinctions between NS and IFS are underlined.
A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability (fourth edition)
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 1599730804
Category : Mathematics
Languages : en
Pages : 157
Book Description
N-Norm and N-conorm are extended in Neutrosophic Logic/Set.
Publisher: Infinite Study
ISBN: 1599730804
Category : Mathematics
Languages : en
Pages : 157
Book Description
N-Norm and N-conorm are extended in Neutrosophic Logic/Set.
Plithogeny, Plithogenic Set, Logic, Probability, and Statistics
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 143
Book Description
We introduce for the first time the concept of plithogeny in philosophy and, as a derivative, the concepts of plithogenic set / logic / probability / statistics in mathematics and engineering – and the degrees of contradiction (dissimilarity) between the attributes’ values that contribute to a more accurate construction of plithogenic aggregation operators and to the plithogenic relationship of inclusion (partial ordering).
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 143
Book Description
We introduce for the first time the concept of plithogeny in philosophy and, as a derivative, the concepts of plithogenic set / logic / probability / statistics in mathematics and engineering – and the degrees of contradiction (dissimilarity) between the attributes’ values that contribute to a more accurate construction of plithogenic aggregation operators and to the plithogenic relationship of inclusion (partial ordering).
Collected Papers. Volume VI
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 1002
Book Description
This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 1002
Book Description
This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas.