Powertrain Sizing and Energy Usage Adaptation Strategy for Plug-in Hybrid Electric Vehicles

Powertrain Sizing and Energy Usage Adaptation Strategy for Plug-in Hybrid Electric Vehicles PDF Author: Soumendu Chanda
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 155

Get Book Here

Book Description
An energy usage adaptation (EUA) strategy to manage the charge/discharge profile of the energy storage system for plug-in hybrid vehicles is presented in this thesis. The objective of the EUA strategy is to bring the stored energy to a low level at the end of the daily drive cycle, and to limit the number of deep discharge cycles. The EUA algorithm first predicts the energy usage for a given day based on historical usage data. The predicted energy is then compared with the actual energy used and the battery energy available to set the SOC limits in the energy management algorithm. The EUA strategy has been tuned and tested using simulations of both a series and a series-parallel plug-in hybrid vehicle (model) with vehicle control algorithms developed for the purpose. The strategy is shown to improve the fuel economy of the vehicle and to reduce the cost per mile of operation by efficiently using the off board supplied energy. It also helps to extend the life of the battery by limiting the number of deep discharge cycles to no more than one per day. A well-to-wheel analysis of the designed plug-in hybrid is also done using the standard GREET model and through vehicle simulation to investigate the overall efficiency of plug-in hybrid vehicles. The well-to-wheel efficiency of the plug-in hybrids is found to be lower than those of the conventional gasoline and electric vehicles.

Powertrain Sizing and Energy Usage Adaptation Strategy for Plug-in Hybrid Electric Vehicles

Powertrain Sizing and Energy Usage Adaptation Strategy for Plug-in Hybrid Electric Vehicles PDF Author: Soumendu Chanda
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 155

Get Book Here

Book Description
An energy usage adaptation (EUA) strategy to manage the charge/discharge profile of the energy storage system for plug-in hybrid vehicles is presented in this thesis. The objective of the EUA strategy is to bring the stored energy to a low level at the end of the daily drive cycle, and to limit the number of deep discharge cycles. The EUA algorithm first predicts the energy usage for a given day based on historical usage data. The predicted energy is then compared with the actual energy used and the battery energy available to set the SOC limits in the energy management algorithm. The EUA strategy has been tuned and tested using simulations of both a series and a series-parallel plug-in hybrid vehicle (model) with vehicle control algorithms developed for the purpose. The strategy is shown to improve the fuel economy of the vehicle and to reduce the cost per mile of operation by efficiently using the off board supplied energy. It also helps to extend the life of the battery by limiting the number of deep discharge cycles to no more than one per day. A well-to-wheel analysis of the designed plug-in hybrid is also done using the standard GREET model and through vehicle simulation to investigate the overall efficiency of plug-in hybrid vehicles. The well-to-wheel efficiency of the plug-in hybrids is found to be lower than those of the conventional gasoline and electric vehicles.

Hybrid Electric Vehicles

Hybrid Electric Vehicles PDF Author: Chris Mi
Publisher: John Wiley & Sons
ISBN: 1119970113
Category : Technology & Engineering
Languages : en
Pages : 449

Get Book Here

Book Description
Modern Hybrid Electric Vehicles provides vital guidance to help a new generation of engineers master the principles of and further advance hybrid vehicle technology. The authors address purely electric, hybrid electric, plug-in hybrid electric, hybrid hydraulic, fuel cell, and off-road hybrid vehicle systems. They focus on the power and propulsion systems for these vehicles, including issues related to power and energy management. They concentrate on material that is not readily available in other hybrid electric vehicle (HEV) books such as design examples for hybrid vehicles, and cover new developments in the field including electronic CVT, plug-in hybrid, and new power converters and controls. Covers hybrid vs. pure electric, HEV system architecture (including plug-in and hydraulic), off-road and other industrial utility vehicles, non-ground-vehicle applications like ships, locomotives, aircrafts, system reliability, EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Contains core fundamentals and principles of modern hybrid vehicles at component level and system level. Provides graduate students and field engineers with a text suitable for classroom teaching or self-study.

Hybrid Electric Vehicles

Hybrid Electric Vehicles PDF Author: Simona Onori
Publisher: Springer
ISBN: 1447167813
Category : Technology & Engineering
Languages : en
Pages : 121

Get Book Here

Book Description
This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.

An Energy Management Strategy for Plug-in Hybrid Electric Vehicles

An Energy Management Strategy for Plug-in Hybrid Electric Vehicles PDF Author: Benjamin Bader
Publisher:
ISBN:
Category :
Languages : en
Pages : 139

Get Book Here

Book Description
This dissertation formulates a proposal for a real time implementable energy management strategy (EMS) for plug-in hybrid electric vehicles. The EMS is developed to minimize vehicle fuel consumption through the utilisation of stored electric energy and high-efficiency operation of powertrain components. This objective is achieved through the development of a predictive EMS, which, in addition to fuel efficiency, is optimized in terms of computational cost and drivability. The requirement for an EMS in hybrid powertrain vehicles stems from the integration of two energy stores and converters in the powertrain; in the case of hybrid electric vehicles (HEVs) usually a combustion engine and one or more electric machines powered by a battery. During operation of the vehicle the EMS controls power distribution between engine and electric traction motor. Power distribution is optimized according to the operating point dependent efficiencies of the components, energy level of the battery and trip foreknowledge. Drivability considerations, e.g. frequency of engine starts, can also be considered. Due to high oil prices and legislative requirements caused by the environmental impact of greenhouse emissions, fuel economy has gained importance in recent years. In addition to increased fuel economy, powertrain hybridization permits the substituton of fuel for electrical energy by implementing an external recharging option for the battery. This vehicle class, incorporating a battery rechargeable via the electrical grid, is known as a plug-in HEV (PHEV). PHEV share characteristics of both HEVs and all-electric vehicles combining several advantages of both technologies. The rechargeable battery feature of the PHEVs makes their EMS development espe-cially challenging. For minimal fuel consumption, the battery is discharged optimally over the whole trip length, prioritising electrical energy when driving conditions are such that its use maximises the fuel saving that can be achieved. Therefore, an EMS for a PHEV depends heavily on the availability of a priori knowledge about the trip, i.e. the knowledge about future vehicle speed and road grade. This requires the driver to indi-cate the route before trip start. The route knowledge in combination with GPS or Galileo based next generation navigation systems using information from a geographic in-formation system (GIS) about terrain height profile, road type (e.g. motorway or country road), and legal speed limits can be evaluated by a speed prediction algorithm including information about the driver's behaviour for a detailed prediction of the trip. These navigation systems and algorithms in combination with expected future advances and the deployment of technologies such as intelligent transport systems (ITS) and vehicle-to-vehicle communication (V2V), will make more exact traffic information available to further improve prediction. Despite expected advances in prediction quality, inaccuracy of prediction data has to be considered and is therefore regarded in this work. The EMS proposed in this dissertation combines different approaches which are exe-cuted step by step. A first approximation of the energy distribution during the trip is based on a mixed integer linear program (MILP), which gives the optimal energy state of the battery during the trip. This is especially important for trips with long uphill, downhill or urban phases, i.e. sections with a particularly high or lower power requirement. The results from MILP are then used by a dynamic programming (DP) algorithm to calculate optimal torque and gear using a receding prediction horizon. Using a receding prediction horizon, an important reduction of computational cost is achieved. Lastly, from the DP results a rule-based strategy is extracted using a support vector machine (SVM). This last step is necessary to ensure the drivability of the vehicle also for inaccurate prediction data.

Transitions to Alternative Vehicles and Fuels

Transitions to Alternative Vehicles and Fuels PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309268524
Category : Science
Languages : en
Pages : 395

Get Book Here

Book Description
For a century, almost all light-duty vehicles (LDVs) have been powered by internal combustion engines operating on petroleum fuels. Energy security concerns about petroleum imports and the effect of greenhouse gas (GHG) emissions on global climate are driving interest in alternatives. Transitions to Alternative Vehicles and Fuels assesses the potential for reducing petroleum consumption and GHG emissions by 80 percent across the U.S. LDV fleet by 2050, relative to 2005. This report examines the current capability and estimated future performance and costs for each vehicle type and non-petroleum-based fuel technology as options that could significantly contribute to these goals. By analyzing scenarios that combine various fuel and vehicle pathways, the report also identifies barriers to implementation of these technologies and suggests policies to achieve the desired reductions. Several scenarios are promising, but strong, and effective policies such as research and development, subsidies, energy taxes, or regulations will be necessary to overcome barriers, such as cost and consumer choice.

Electric and Hybrid Vehicles

Electric and Hybrid Vehicles PDF Author: Gianfranco Pistoia
Publisher: Elsevier
ISBN: 0444535667
Category : Technology & Engineering
Languages : en
Pages : 671

Get Book Here

Book Description
Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market reviews the performance, cost, safety, and sustainability of battery systems for hybrid electric vehicles (HEVs) and electric vehicles (EVs), including nickel-metal hydride batteries and Li-ion batteries. Throughout this book, especially in the first chapters, alternative vehicles with different power trains are compared in terms of lifetime cost, fuel consumption, and environmental impact. The emissions of greenhouse gases are particularly dealt with. The improvement of the battery, or fuel cell, performance and governmental incentives will play a fundamental role in determining how far and how substantial alternative vehicles will penetrate into the market. An adequate recharging infrastructure is of paramount importance for the diffusion of vehicles powered by batteries and fuel cells, as it may contribute to overcome the so-called range anxiety."" Thus, proposed battery charging techniques are summarized and hydrogen refueling stations are described. The final chapter reviews the state of the art of the current models of hybrid and electric vehicles along with the powertrain solutions adopted by the major automakers. - Contributions from the worlds leading industry and research experts - Executive summaries of specific case studies - Information on basic research and application approaches

Future Powertrain Technologies

Future Powertrain Technologies PDF Author: Stephan Rinderknecht
Publisher: MDPI
ISBN: 3039437534
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
Among the various factors greatly influencing the development process of future powertrain technologies, the trends in climate change and digitalization are of huge public interest. To handle these trends, new disruptive technologies are integrated into the development process. They open up space for diverse research which is distributed over the entire vehicle design process. This book contains recent research articles which incorporate results for selecting and designing powertrain topology in consideration of the vehicle operating strategy as well as results for handling the reliability of new powertrain components. The field of investigation spans from the identification of ecologically optimal transformation of the existent vehicle fleet to the development of machine learning-based operating strategies and the comparison of complex hybrid electric vehicle topologies to reduce CO2 emissions.

Electric and Plug-In Hybrid Vehicles

Electric and Plug-In Hybrid Vehicles PDF Author: Bogdan Ovidiu Varga
Publisher: Springer
ISBN: 3319186396
Category : Technology & Engineering
Languages : en
Pages : 536

Get Book Here

Book Description
This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain is analyzed and output results presented through the use of specific automotive industrial software (AVL Cruise , IPG CarMaker, AVL Concerto). This methodology of electric and hybrid powertrain design serves to broaden understanding of how the energy flow, efficiency, range and consumption of these vehicles can be adjusted, updated and predicted via development processes.

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles PDF Author: Teng Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1681736195
Category : Technology & Engineering
Languages : en
Pages : 99

Get Book Here

Book Description
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.

Hybrid Electric Vehicles

Hybrid Electric Vehicles PDF Author: Chris Mi
Publisher: John Wiley & Sons
ISBN: 111897056X
Category : Technology & Engineering
Languages : en
Pages : 611

Get Book Here

Book Description
The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Hybrid Electric Vehicles, Second Edition is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. Completely updated with new chapters Covers recent developments, breakthroughs, and technologies, including new drive topologies Explains HEV fundamentals and applications Offers a holistic perspective on vehicle electrification Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering.