Author: Nikolaĭ Maksimovich Gi︠u︡nter
Publisher: Burns & Oates
ISBN:
Category : Mathematics
Languages : en
Pages : 360
Book Description
Potential Theory, and Its Applications to Basic Problems of Mathematical Physics
Author: Nikolaĭ Maksimovich Gi︠u︡nter
Publisher: Burns & Oates
ISBN:
Category : Mathematics
Languages : en
Pages : 360
Book Description
Publisher: Burns & Oates
ISBN:
Category : Mathematics
Languages : en
Pages : 360
Book Description
Singular Integral Equations
Author: N. I. Muskhelishvili
Publisher: Courier Corporation
ISBN: 0486145069
Category : Mathematics
Languages : en
Pages : 466
Book Description
DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div
Publisher: Courier Corporation
ISBN: 0486145069
Category : Mathematics
Languages : en
Pages : 466
Book Description
DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div
Potential Theory in Applied Geophysics
Author: Kalyan Kumar Roy
Publisher: Springer Science & Business Media
ISBN: 354072334X
Category : Science
Languages : en
Pages : 661
Book Description
This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.
Publisher: Springer Science & Business Media
ISBN: 354072334X
Category : Science
Languages : en
Pages : 661
Book Description
This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.
Methods for Solving Mathematical Physics Problems
Author: Valeriĭ Ivanovich Agoshkov
Publisher: Cambridge Int Science Publishing
ISBN: 1904602053
Category : Science
Languages : en
Pages : 335
Book Description
The aim of the book is to present to a wide range of readers (students, postgraduates, scientists, engineers, etc.) basic information on one of the directions of mathematics, methods for solving mathematical physics problems. The authors have tried to select for the book methods that have become classical and generally accepted. However, some of the current versions of these methods may be missing from the book because they require special knowledge. The book is of the handbook-teaching type. On the one hand, the book describes the main definitions, the concepts of the examined methods and approaches used in them, and also the results and claims obtained in every specific case. On the other hand, proofs of the majority of these results are not presented and they are given only in the simplest (methodological) cases. Another special feature of the book is the inclusion of many examples of application of the methods for solving specific mathematical physics problems of applied nature used in various areas of science and social activity, such as power engineering, environmental protection, hydrodynamics, elasticity theory, etc. This should provide additional information on possible applications of these methods. To provide complete information, the book includes a chapter dealing with the main problems of mathematical physics, together with the results obtained in functional analysis and boundary-value theory for equations with partial derivatives.
Publisher: Cambridge Int Science Publishing
ISBN: 1904602053
Category : Science
Languages : en
Pages : 335
Book Description
The aim of the book is to present to a wide range of readers (students, postgraduates, scientists, engineers, etc.) basic information on one of the directions of mathematics, methods for solving mathematical physics problems. The authors have tried to select for the book methods that have become classical and generally accepted. However, some of the current versions of these methods may be missing from the book because they require special knowledge. The book is of the handbook-teaching type. On the one hand, the book describes the main definitions, the concepts of the examined methods and approaches used in them, and also the results and claims obtained in every specific case. On the other hand, proofs of the majority of these results are not presented and they are given only in the simplest (methodological) cases. Another special feature of the book is the inclusion of many examples of application of the methods for solving specific mathematical physics problems of applied nature used in various areas of science and social activity, such as power engineering, environmental protection, hydrodynamics, elasticity theory, etc. This should provide additional information on possible applications of these methods. To provide complete information, the book includes a chapter dealing with the main problems of mathematical physics, together with the results obtained in functional analysis and boundary-value theory for equations with partial derivatives.
Encyclopaedia of Mathematics
Author: M. Hazewinkel
Publisher: Springer
ISBN: 1489937978
Category : Mathematics
Languages : en
Pages : 927
Book Description
Publisher: Springer
ISBN: 1489937978
Category : Mathematics
Languages : en
Pages : 927
Book Description
Treatise on Geophysics, Volume 3
Author: Tom Herring
Publisher: Elsevier
ISBN: 0444535799
Category : Science
Languages : en
Pages : 461
Book Description
Geodesy, which is the science of measuring the size and shape of the Earth, explores the theory, instrumentation and results from modern geodetic systems. The beginning sections of the volume cover the theory of the Earth's gravity field, the instrumentation for measuring the field, and its temporal variations. The measurements and results obtained from variations in the rotation of the Earth are covered in the sections on short and long period rotation hanges. Space based geodetic methods, including the global positioning system (GPS) and Interferometric synthetic aperture radar (SAR), are also examined in detail. - Self-contained volume starts with an overview of the subject then explores each topic with in depth detail - Extensive reference lists and cross references with other volumes to facilitate further research - Full-color figures and tables support the text and aid in understanding - Content suited for both the expert and non-expert
Publisher: Elsevier
ISBN: 0444535799
Category : Science
Languages : en
Pages : 461
Book Description
Geodesy, which is the science of measuring the size and shape of the Earth, explores the theory, instrumentation and results from modern geodetic systems. The beginning sections of the volume cover the theory of the Earth's gravity field, the instrumentation for measuring the field, and its temporal variations. The measurements and results obtained from variations in the rotation of the Earth are covered in the sections on short and long period rotation hanges. Space based geodetic methods, including the global positioning system (GPS) and Interferometric synthetic aperture radar (SAR), are also examined in detail. - Self-contained volume starts with an overview of the subject then explores each topic with in depth detail - Extensive reference lists and cross references with other volumes to facilitate further research - Full-color figures and tables support the text and aid in understanding - Content suited for both the expert and non-expert
Electromagnetic Fields
Author: Jean G. Van Bladel
Publisher: John Wiley & Sons
ISBN: 0470124571
Category : Science
Languages : en
Pages : 1171
Book Description
Professor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.
Publisher: John Wiley & Sons
ISBN: 0470124571
Category : Science
Languages : en
Pages : 1171
Book Description
Professor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.
Potential Method in Mathematical Theories of Multi-Porosity Media
Author: Merab Svanadze
Publisher: Springer Nature
ISBN: 3030280225
Category : Mathematics
Languages : en
Pages : 313
Book Description
This monograph explores the application of the potential method to three-dimensional problems of the mathematical theories of elasticity and thermoelasticity for multi-porosity materials. These models offer several new possibilities for the study of important problems in engineering and mechanics involving multi-porosity materials, including geological materials (e.g., oil, gas, and geothermal reservoirs); manufactured porous materials (e.g., ceramics and pressed powders); and biomaterials (e.g., bone and the human brain). Proceeding from basic to more advanced material, the first part of the book begins with fundamental solutions in elasticity, followed by Galerkin-type solutions and Green’s formulae in elasticity and problems of steady vibrations, quasi-static, and pseudo-oscillations for multi-porosity materials. The next part follows a similar format for thermoelasticity, concluding with a chapter on problems of heat conduction for rigid bodies. The final chapter then presents a number of open research problems to which the results presented here can be applied. All results discussed by the author have not been published previously and offer new insights into these models. Potential Method in Mathematical Theories of Multi-Porosity Media will be a valuable resource for applied mathematicians, mechanical, civil, and aerospace engineers, and researchers studying continuum mechanics. Readers should be knowledgeable in classical theories of elasticity and thermoelasticity.
Publisher: Springer Nature
ISBN: 3030280225
Category : Mathematics
Languages : en
Pages : 313
Book Description
This monograph explores the application of the potential method to three-dimensional problems of the mathematical theories of elasticity and thermoelasticity for multi-porosity materials. These models offer several new possibilities for the study of important problems in engineering and mechanics involving multi-porosity materials, including geological materials (e.g., oil, gas, and geothermal reservoirs); manufactured porous materials (e.g., ceramics and pressed powders); and biomaterials (e.g., bone and the human brain). Proceeding from basic to more advanced material, the first part of the book begins with fundamental solutions in elasticity, followed by Galerkin-type solutions and Green’s formulae in elasticity and problems of steady vibrations, quasi-static, and pseudo-oscillations for multi-porosity materials. The next part follows a similar format for thermoelasticity, concluding with a chapter on problems of heat conduction for rigid bodies. The final chapter then presents a number of open research problems to which the results presented here can be applied. All results discussed by the author have not been published previously and offer new insights into these models. Potential Method in Mathematical Theories of Multi-Porosity Media will be a valuable resource for applied mathematicians, mechanical, civil, and aerospace engineers, and researchers studying continuum mechanics. Readers should be knowledgeable in classical theories of elasticity and thermoelasticity.
Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9401512353
Category : Mathematics
Languages : en
Pages : 549
Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Publisher: Springer Science & Business Media
ISBN: 9401512353
Category : Mathematics
Languages : en
Pages : 549
Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Scattering By Obstacles And Potentials
Author: Alexander G Ramm
Publisher: World Scientific
ISBN: 9813220988
Category : Science
Languages : en
Pages : 621
Book Description
The book is important as it contains results many of which are not available in the literature, except in the author's papers. Among other things, it gives uniqueness theorems for inverse scattering problems when the data are non-over-determined, numerical method for solving inverse scattering problems, a method (MRC) for solving direct scattering problem.
Publisher: World Scientific
ISBN: 9813220988
Category : Science
Languages : en
Pages : 621
Book Description
The book is important as it contains results many of which are not available in the literature, except in the author's papers. Among other things, it gives uniqueness theorems for inverse scattering problems when the data are non-over-determined, numerical method for solving inverse scattering problems, a method (MRC) for solving direct scattering problem.