Poset Codes: Partial Orders, Metrics and Coding Theory

Poset Codes: Partial Orders, Metrics and Coding Theory PDF Author: Marcelo Firer
Publisher: Springer
ISBN: 3319938215
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
This book offers an organized and systematic approach to poset metrics and codes. Poset metrics, or metrics on a vector field determined by a partial order over a finite set, were first introduced in the mid-1990s by the mathematicians Richard A. Brualdi, Janine S. Graves and K. Mark Lawrence, and to date the relevant knowledge on this subject was spread over more than two hundred research papers. Poset metrics generalizes both the standard Hamming metric – the most important metric used in the context of coding theory – and the Niederreiter-Rosenbloom-Tsfasman metric, which is an ultrametric. Conceived to be as self-contained as possible, the book starts from basic concepts of coding theory and advances towards coding theory for poset metrics and generalizations. Each chapter includes a survey of the topic presented and a list of exercises, drawn in part from recently proven results. This work will appeal to researchers and graduate students alike, particularly those in the fields of Mathematics, Electrical Engineering and Computer Sciences, with an interest in discrete geometry and coding theory.

Poset Codes: Partial Orders, Metrics and Coding Theory

Poset Codes: Partial Orders, Metrics and Coding Theory PDF Author: Marcelo Firer
Publisher: Springer
ISBN: 3319938215
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
This book offers an organized and systematic approach to poset metrics and codes. Poset metrics, or metrics on a vector field determined by a partial order over a finite set, were first introduced in the mid-1990s by the mathematicians Richard A. Brualdi, Janine S. Graves and K. Mark Lawrence, and to date the relevant knowledge on this subject was spread over more than two hundred research papers. Poset metrics generalizes both the standard Hamming metric – the most important metric used in the context of coding theory – and the Niederreiter-Rosenbloom-Tsfasman metric, which is an ultrametric. Conceived to be as self-contained as possible, the book starts from basic concepts of coding theory and advances towards coding theory for poset metrics and generalizations. Each chapter includes a survey of the topic presented and a list of exercises, drawn in part from recently proven results. This work will appeal to researchers and graduate students alike, particularly those in the fields of Mathematics, Electrical Engineering and Computer Sciences, with an interest in discrete geometry and coding theory.

Error-Correcting Codes, Finite Geometries and Cryptography

Error-Correcting Codes, Finite Geometries and Cryptography PDF Author: Aiden A. Bruen
Publisher: American Mathematical Soc.
ISBN: 0821849565
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
This interdisciplinary volume contains papers from both a conference and special session on Error-Control Codes, Information Theory and Applied Cryptography. The conference was held at the Fields Institute in Toronto, On, Canada from December 5-6, 2007, and the special session was held at the Canadian Mathematical Society's winter meeting in London, ON, Canada from December 8-10, 2007. The volume features cutting-edge theoretical results on the Reed-Muller and Reed-Solomon codes, classical linear codes, codes from nets and block designs, LDPC codes, perfect quantum and orthogonal codes, iterative decoding, magnetic storage and digital memory devices, and MIMO channels. There are new contributions on privacy reconciliation, resilient functions, cryptographic hash functions, and new work on quantum coins. Related original work in finite geometries concerns two-weight codes coming from partial spreads, (0, 1) matrices with forbidden configurations, Andre embeddings, and representations of projective spaces in affine planes. Great care has been taken to ensure that high expository standards are met by the papers in this volume. Accordingly, the papers are written in a user-friendly format. The hope is that this volume will be of interst and of benefit both to the experienced and to newcomers alike.

Partial Order Concepts in Applied Sciences

Partial Order Concepts in Applied Sciences PDF Author: Marco Fattore
Publisher: Springer
ISBN: 9783319454191
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
TThis book illustrates recent advances in applications of partial order theory and Hasse diagram techniques to data analysis, mainly in the socio-economic and environmental sciences. For years, partial order theory has been considered a fundamental branch of mathematics of only theoretical interest. In recent years, its effectiveness as a tool for data analysis is increasingly being realized and many applications of partially ordered sets to real problems in statistics and applied sciences have appeared. Main examples pertain to the analysis of complex and multidimensional systems of ordinal data and to problems of multi-criteria decision making, so relevant in social and environmental sciences. Partial Order Concepts in Applied Sciences presents new theoretical and methodological developments in partial order for data analysis, together with a wide range of applications to different topics: multidimensional poverty, economic development, inequality measurement, ecology and pollution, and biology, to mention a few. The book is of interest for applied mathematicians, statisticians, social scientists, environmental scientists and all those aiming at keeping pace with innovation in this interesting, growing and promising research field.

Mathematics and Computation

Mathematics and Computation PDF Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434

Get Book Here

Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Covering Codes

Covering Codes PDF Author: G. Cohen
Publisher: Elsevier
ISBN: 0080530079
Category : Mathematics
Languages : en
Pages : 565

Get Book Here

Book Description
The problems of constructing covering codes and of estimating their parameters are the main concern of this book. It provides a unified account of the most recent theory of covering codes and shows how a number of mathematical and engineering issues are related to covering problems.Scientists involved in discrete mathematics, combinatorics, computer science, information theory, geometry, algebra or number theory will find the book of particular significance. It is designed both as an introductory textbook for the beginner and as a reference book for the expert mathematician and engineer.A number of unsolved problems suitable for research projects are also discussed.

Concise Encyclopedia of Coding Theory

Concise Encyclopedia of Coding Theory PDF Author: W. Cary Huffman
Publisher: CRC Press
ISBN: 1351375105
Category : Computers
Languages : en
Pages : 998

Get Book Here

Book Description
Most coding theory experts date the origin of the subject with the 1948 publication of A Mathematical Theory of Communication by Claude Shannon. Since then, coding theory has grown into a discipline with many practical applications (antennas, networks, memories), requiring various mathematical techniques, from commutative algebra, to semi-definite programming, to algebraic geometry. Most topics covered in the Concise Encyclopedia of Coding Theory are presented in short sections at an introductory level and progress from basic to advanced level, with definitions, examples, and many references. The book is divided into three parts: Part I fundamentals: cyclic codes, skew cyclic codes, quasi-cyclic codes, self-dual codes, codes and designs, codes over rings, convolutional codes, performance bounds Part II families: AG codes, group algebra codes, few-weight codes, Boolean function codes, codes over graphs Part III applications: alternative metrics, algorithmic techniques, interpolation decoding, pseudo-random sequences, lattices, quantum coding, space-time codes, network coding, distributed storage, secret-sharing, and code-based-cryptography. Features Suitable for students and researchers in a wide range of mathematical disciplines Contains many examples and references Most topics take the reader to the frontiers of research

Monoidal Topology

Monoidal Topology PDF Author: Dirk Hofmann
Publisher: Cambridge University Press
ISBN: 1107063949
Category : Mathematics
Languages : en
Pages : 523

Get Book Here

Book Description
Based on lax-algebraic and categorical methods, Monoidal Topology provides a unified theory for metric and topological structures with far-reaching applications.

Relativity And Gravitation: Classical And Quantum - Proceedings Of The 7th Latin American Symposium On Relativity And Gravitation (Silarg Vii)

Relativity And Gravitation: Classical And Quantum - Proceedings Of The 7th Latin American Symposium On Relativity And Gravitation (Silarg Vii) PDF Author: Michael P Ryan Jr
Publisher: World Scientific
ISBN: 9814555959
Category :
Languages : en
Pages : 566

Get Book Here

Book Description
The Latin American Symposium on Relativity and Gravitation has been held every two or three years over the past twenty years. This is the seventh in the series.

Computational Topology for Data Analysis

Computational Topology for Data Analysis PDF Author: Tamal Krishna Dey
Publisher: Cambridge University Press
ISBN: 1009103199
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.

A Course on Borel Sets

A Course on Borel Sets PDF Author: S.M. Srivastava
Publisher: Springer
ISBN: 3642854737
Category : Mathematics
Languages : en
Pages : 271

Get Book Here

Book Description
The roots of Borel sets go back to the work of Baire [8]. He was trying to come to grips with the abstract notion of a function introduced by Dirich let and Riemann. According to them, a function was to be an arbitrary correspondence between objects without giving any method or procedure by which the correspondence could be established. Since all the specific functions that one studied were determined by simple analytic expressions, Baire delineated those functions that can be constructed starting from con tinuous functions and iterating the operation 0/ pointwise limit on a se quence 0/ functions. These functions are now known as Baire functions. Lebesgue [65] and Borel [19] continued this work. In [19], Borel sets were defined for the first time. In his paper, Lebesgue made a systematic study of Baire functions and introduced many tools and techniques that are used even today. Among other results, he showed that Borel functions coincide with Baire functions. The study of Borel sets got an impetus from an error in Lebesgue's paper, which was spotted by Souslin. Lebesgue was trying to prove the following: Suppose / : )R2 -- R is a Baire function such that for every x, the equation /(x,y) = 0 has a. unique solution. Then y as a function 0/ x defined by the above equation is Baire.