Author: Shai Dekel
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110761874
Category : Mathematics
Languages : en
Pages : 211
Book Description
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a suffi cient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of fl exible ellipsoid covers of Rn that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
Pointwise Variable Anisotropic Function Spaces on Rn
Author: Shai Dekel
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110761874
Category : Mathematics
Languages : en
Pages : 211
Book Description
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a suffi cient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of fl exible ellipsoid covers of Rn that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110761874
Category : Mathematics
Languages : en
Pages : 211
Book Description
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a suffi cient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of fl exible ellipsoid covers of Rn that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
Pointwise Variable Anisotropic Function Spaces on Rn
Author: Shai Dekel
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110761793
Category : Mathematics
Languages : en
Pages : 250
Book Description
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a sufficient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of flexible ellipsoid covers of Rn that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110761793
Category : Mathematics
Languages : en
Pages : 250
Book Description
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a sufficient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of flexible ellipsoid covers of Rn that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
Boundary Value Problems for Second-Order Finite Difference Equations and Systems
Author: Johnny Henderson
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111040372
Category : Mathematics
Languages : en
Pages : 168
Book Description
This is an indispensable reference for those mathematicians that conduct research activity in applications of fixed-point theory to boundary value problems for nonlinear functional equations. Coverage includes second-order finite difference equations and systems of difference equations subject to multi-point boundary conditions, various methods to study the existence of positive solutions for difference equations, and Green functions.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111040372
Category : Mathematics
Languages : en
Pages : 168
Book Description
This is an indispensable reference for those mathematicians that conduct research activity in applications of fixed-point theory to boundary value problems for nonlinear functional equations. Coverage includes second-order finite difference equations and systems of difference equations subject to multi-point boundary conditions, various methods to study the existence of positive solutions for difference equations, and Green functions.
Lebesgue and Sobolev Spaces with Variable Exponents
Author: Lars Diening
Publisher: Springer
ISBN: 3642183638
Category : Mathematics
Languages : en
Pages : 516
Book Description
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Publisher: Springer
ISBN: 3642183638
Category : Mathematics
Languages : en
Pages : 516
Book Description
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Theory of Function Spaces
Author: Hans Triebel
Publisher: Springer Science & Business Media
ISBN: 3034604165
Category : Science
Languages : en
Pages : 287
Book Description
The book deals with the two scales Bsp,q and Fsp,q of spaces of distributions, where ‐∞s∞ and 0p,q≤∞, which include many classical and modern spaces, such as Hölder spaces, Zygmund classes, Sobolev spaces, Besov spaces, Bessel-potential spaces, Hardy spaces and spaces of BMO-type. It is the main aim of this book to give a unified treatment of the corresponding spaces on the Euclidean n-space Rsubn
Publisher: Springer Science & Business Media
ISBN: 3034604165
Category : Science
Languages : en
Pages : 287
Book Description
The book deals with the two scales Bsp,q and Fsp,q of spaces of distributions, where ‐∞s∞ and 0p,q≤∞, which include many classical and modern spaces, such as Hölder spaces, Zygmund classes, Sobolev spaces, Besov spaces, Bessel-potential spaces, Hardy spaces and spaces of BMO-type. It is the main aim of this book to give a unified treatment of the corresponding spaces on the Euclidean n-space Rsubn
Theory of Function Spaces II
Author: Hans Triebel
Publisher: Springer Science & Business Media
ISBN: 303460419X
Category : Science
Languages : en
Pages : 376
Book Description
Publisher: Springer Science & Business Media
ISBN: 303460419X
Category : Science
Languages : en
Pages : 376
Book Description
Morrey and Campanato Meet Besov, Lizorkin and Triebel
Author: Wen Yuan
Publisher: Springer Science & Business Media
ISBN: 3642146058
Category : Mathematics
Languages : en
Pages : 295
Book Description
During the last 60 years the theory of function spaces has been a subject of growing interest and increasing diversity. Based on three formally different developments, namely, the theory of Besov and Triebel-Lizorkin spaces, the theory of Morrey and Campanato spaces and the theory of Q spaces, the authors develop a unified framework for all of these spaces. As a byproduct, the authors provide a completion of the theory of Triebel-Lizorkin spaces when p = ∞.
Publisher: Springer Science & Business Media
ISBN: 3642146058
Category : Mathematics
Languages : en
Pages : 295
Book Description
During the last 60 years the theory of function spaces has been a subject of growing interest and increasing diversity. Based on three formally different developments, namely, the theory of Besov and Triebel-Lizorkin spaces, the theory of Morrey and Campanato spaces and the theory of Q spaces, the authors develop a unified framework for all of these spaces. As a byproduct, the authors provide a completion of the theory of Triebel-Lizorkin spaces when p = ∞.
Theory of Besov Spaces
Author: Yoshihiro Sawano
Publisher: Springer
ISBN: 9811308365
Category : Mathematics
Languages : en
Pages : 964
Book Description
This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.
Publisher: Springer
ISBN: 9811308365
Category : Mathematics
Languages : en
Pages : 964
Book Description
This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.
Anisotropic Hardy Spaces and Wavelets
Author: Marcin Bownik
Publisher: American Mathematical Soc.
ISBN: 082183326X
Category : Mathematics
Languages : en
Pages : 136
Book Description
Investigates the anisotropic Hardy spaces associated with very general discrete groups of dilations. This book includes the classical isotropic Hardy space theory of Fefferman and Stein and parabolic Hardy space theory of Calderon and Torchinsky.
Publisher: American Mathematical Soc.
ISBN: 082183326X
Category : Mathematics
Languages : en
Pages : 136
Book Description
Investigates the anisotropic Hardy spaces associated with very general discrete groups of dilations. This book includes the classical isotropic Hardy space theory of Fefferman and Stein and parabolic Hardy space theory of Calderon and Torchinsky.
Morrey Spaces
Author: Yoshihiro Sawano
Publisher: CRC Press
ISBN: 1000064077
Category : Mathematics
Languages : en
Pages : 427
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Publisher: CRC Press
ISBN: 1000064077
Category : Mathematics
Languages : en
Pages : 427
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding