Author: Christopher T. Brett
Publisher: Springer Science & Business Media
ISBN: 9780412580604
Category : Science
Languages : en
Pages : 282
Book Description
The plant cell wall plays a vital role in almost every aspect of plant physiology. New techniques in spectroscopy, biophysics and molecular biology have revealed the extraordinary complexity of its molecular architecture and just how important this structure is in the control of plant growth and development. The Second Edition of this accessible and integrated textbook has been revised and updated throughout. As well as focusing on the structure and function of plant cell walls the book also looks at the applications of this research. It discusses how plant cell walls can be exploited by the biotechnology industry and some of the main challenges for future research. Key topics include: architecture and skeletal functions of the wall; cell-wall formation; control of cell growth; role in intracellular transport; interactions with other organisms; cell-wall degradation; biotechnological applications of cell-walls; role in diet and health. This textbook provides a clear, well illustrated introduction to the physiology and biochemistry of plant cell walls which will be invaluable to upper level undergraduate and post graduate students of plant physiology, plant pathology, plant biotechnology and biochemistry.
Physiology and Biochemistry of Plant Cell Walls
Author: Christopher T. Brett
Publisher: Springer Science & Business Media
ISBN: 9780412580604
Category : Science
Languages : en
Pages : 282
Book Description
The plant cell wall plays a vital role in almost every aspect of plant physiology. New techniques in spectroscopy, biophysics and molecular biology have revealed the extraordinary complexity of its molecular architecture and just how important this structure is in the control of plant growth and development. The Second Edition of this accessible and integrated textbook has been revised and updated throughout. As well as focusing on the structure and function of plant cell walls the book also looks at the applications of this research. It discusses how plant cell walls can be exploited by the biotechnology industry and some of the main challenges for future research. Key topics include: architecture and skeletal functions of the wall; cell-wall formation; control of cell growth; role in intracellular transport; interactions with other organisms; cell-wall degradation; biotechnological applications of cell-walls; role in diet and health. This textbook provides a clear, well illustrated introduction to the physiology and biochemistry of plant cell walls which will be invaluable to upper level undergraduate and post graduate students of plant physiology, plant pathology, plant biotechnology and biochemistry.
Publisher: Springer Science & Business Media
ISBN: 9780412580604
Category : Science
Languages : en
Pages : 282
Book Description
The plant cell wall plays a vital role in almost every aspect of plant physiology. New techniques in spectroscopy, biophysics and molecular biology have revealed the extraordinary complexity of its molecular architecture and just how important this structure is in the control of plant growth and development. The Second Edition of this accessible and integrated textbook has been revised and updated throughout. As well as focusing on the structure and function of plant cell walls the book also looks at the applications of this research. It discusses how plant cell walls can be exploited by the biotechnology industry and some of the main challenges for future research. Key topics include: architecture and skeletal functions of the wall; cell-wall formation; control of cell growth; role in intracellular transport; interactions with other organisms; cell-wall degradation; biotechnological applications of cell-walls; role in diet and health. This textbook provides a clear, well illustrated introduction to the physiology and biochemistry of plant cell walls which will be invaluable to upper level undergraduate and post graduate students of plant physiology, plant pathology, plant biotechnology and biochemistry.
Plant Cell Walls
Author: Peter Albersheim
Publisher: Garland Science
ISBN: 1136843582
Category : Science
Languages : en
Pages : 449
Book Description
Plant cell walls are complex, dynamic cellular structures essential for plant growth, development, physiology and adaptation. Plant Cell Walls provides an in depth and diverse view of the microanatomy, biosynthesis and molecular physiology of these cellular structures, both in the life of the plant and in their use for bioproducts and biofuels. Plant Cell Walls is a textbook for upper-level undergraduates and graduate students, as well as a professional-level reference book. Over 400 drawings, micrographs, and photographs provide visual insight into the latest research, as well as the uses of plant cell walls in everyday life, and their applications in biotechnology. Illustrated panels concisely review research methods and tools; a list of key terms is given at the end of each chapter; and extensive references organized by concept headings provide readers with guidance for entry into plant cell wall literature. Cell wall material is of considerable importance to the biofuel, food, timber, and pulp and paper industries as well as being a major focus of research in plant growth and sustainability that are of central interest in present day agriculture and biotechnology. The production and use of plants for biofuel and bioproducts in a time of need for responsible global carbon use requires a deep understanding of the fundamental biology of plants and their cell walls. Such an understanding will lead to improved plant processes and materials, and help provide a sustainable resource for meeting the future bioenergy and bioproduct needs of humankind.
Publisher: Garland Science
ISBN: 1136843582
Category : Science
Languages : en
Pages : 449
Book Description
Plant cell walls are complex, dynamic cellular structures essential for plant growth, development, physiology and adaptation. Plant Cell Walls provides an in depth and diverse view of the microanatomy, biosynthesis and molecular physiology of these cellular structures, both in the life of the plant and in their use for bioproducts and biofuels. Plant Cell Walls is a textbook for upper-level undergraduates and graduate students, as well as a professional-level reference book. Over 400 drawings, micrographs, and photographs provide visual insight into the latest research, as well as the uses of plant cell walls in everyday life, and their applications in biotechnology. Illustrated panels concisely review research methods and tools; a list of key terms is given at the end of each chapter; and extensive references organized by concept headings provide readers with guidance for entry into plant cell wall literature. Cell wall material is of considerable importance to the biofuel, food, timber, and pulp and paper industries as well as being a major focus of research in plant growth and sustainability that are of central interest in present day agriculture and biotechnology. The production and use of plants for biofuel and bioproducts in a time of need for responsible global carbon use requires a deep understanding of the fundamental biology of plants and their cell walls. Such an understanding will lead to improved plant processes and materials, and help provide a sustainable resource for meeting the future bioenergy and bioproduct needs of humankind.
Molecular Biology of the Cell
Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
The Plant Cell Wall
Author: Jocelyn K. C. Rose
Publisher: CRC Press
ISBN: 9780849328114
Category : Science
Languages : en
Pages : 408
Book Description
Enzymes, lignin, proteins, cellulose, pectin, kinase.
Publisher: CRC Press
ISBN: 9780849328114
Category : Science
Languages : en
Pages : 408
Book Description
Enzymes, lignin, proteins, cellulose, pectin, kinase.
Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals
Author: Charles E. Wyman
Publisher: John Wiley & Sons
ISBN: 0470972025
Category : Science
Languages : en
Pages : 597
Book Description
Plant biomass is attracting increasing attention as a sustainable resource for large-scale production of renewable fuels and chemicals. However, in order to successfully compete with petroleum, it is vital that biomass conversion processes are designed to minimize costs and maximize yields. Advances in pretreatment technology are critical in order to develop high-yielding, cost-competitive routes to renewable fuels and chemicals. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals presents a comprehensive overview of the currently available aqueous pretreatment technologies for cellulosic biomass, highlighting the fundamental chemistry and biology of each method, key attributes and limitations, and opportunities for future advances. Topics covered include: • The importance of biomass conversion to fuels • The role of pretreatment in biological and chemical conversion of biomass • Composition and structure of biomass, and recalcitrance to conversion • Fundamentals of biomass pretreatment at low, neutral and high pH • Ionic liquid and organosolv pretreatments to fractionate biomass • Comparative data for application of leading pretreatments and effect of enzyme formulations • Physical and chemical features of pretreated biomass • Economics of pretreatment for biological processing • Methods of analysis and enzymatic conversion of biomass streams • Experimental pretreatment systems from multiwell plates to pilot plant operations This comprehensive reference book provides an authoritative source of information on the pretreatment of cellulosic biomass to aid those experienced in the field to access the most current information on the topic. It will also be invaluable to those entering the growing field of biomass conversion.
Publisher: John Wiley & Sons
ISBN: 0470972025
Category : Science
Languages : en
Pages : 597
Book Description
Plant biomass is attracting increasing attention as a sustainable resource for large-scale production of renewable fuels and chemicals. However, in order to successfully compete with petroleum, it is vital that biomass conversion processes are designed to minimize costs and maximize yields. Advances in pretreatment technology are critical in order to develop high-yielding, cost-competitive routes to renewable fuels and chemicals. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals presents a comprehensive overview of the currently available aqueous pretreatment technologies for cellulosic biomass, highlighting the fundamental chemistry and biology of each method, key attributes and limitations, and opportunities for future advances. Topics covered include: • The importance of biomass conversion to fuels • The role of pretreatment in biological and chemical conversion of biomass • Composition and structure of biomass, and recalcitrance to conversion • Fundamentals of biomass pretreatment at low, neutral and high pH • Ionic liquid and organosolv pretreatments to fractionate biomass • Comparative data for application of leading pretreatments and effect of enzyme formulations • Physical and chemical features of pretreated biomass • Economics of pretreatment for biological processing • Methods of analysis and enzymatic conversion of biomass streams • Experimental pretreatment systems from multiwell plates to pilot plant operations This comprehensive reference book provides an authoritative source of information on the pretreatment of cellulosic biomass to aid those experienced in the field to access the most current information on the topic. It will also be invaluable to those entering the growing field of biomass conversion.
Sugarcane
Author: Paul H. Moore
Publisher: John Wiley & Sons
ISBN: 1118771389
Category : Technology & Engineering
Languages : en
Pages : 1063
Book Description
Physiology of Sugarcane looks at the development of a suite of well-established and developing biofuels derived from sugarcane and cane-based co-products, such as bagasse. Chapters provide broad-ranging coverage of sugarcane biology, biotechnological advances, and breakthroughs in production and processing techniques. This single volume resource brings together essential information to researchers and industry personnel interested in utilizing and developing new fuels and bioproducts derived from cane crops.
Publisher: John Wiley & Sons
ISBN: 1118771389
Category : Technology & Engineering
Languages : en
Pages : 1063
Book Description
Physiology of Sugarcane looks at the development of a suite of well-established and developing biofuels derived from sugarcane and cane-based co-products, such as bagasse. Chapters provide broad-ranging coverage of sugarcane biology, biotechnological advances, and breakthroughs in production and processing techniques. This single volume resource brings together essential information to researchers and industry personnel interested in utilizing and developing new fuels and bioproducts derived from cane crops.
Cell Separation in Plants
Author: Daphne J. Osborne
Publisher: Springer
ISBN: 9783642741630
Category : Science
Languages : en
Pages : 449
Book Description
This NATO Advanced Research Workshop held 25-30 September, 1988 at the Villa Gualino, Turin, Italy, was the first international meeting of its kind to be devoted solely to cell separation in plants. The partial or complete dissociation of one cell from another is an integral process of differentiation. Partial cell separations are basic physiological components of the overall programme of plant development. Complete cell separations are major events in the ripening of fruits, and the shedding of plant parts. Unscheduled cell separations commonly occur when tissues are subjected to pathogenic invasion. Environmental stresses too, evoke their own separation responses. Over the past five years much new knowledge has been acquired on the regulation of gene expression in specific stages of cell differentiation. Specific molecular markers have been identified that designate the competence of cells for achieving separation. Certain of the chemical signals (hormones, elicitors) that must be emitted or perceived by cells to initiate and sustain separation, are now known to us, and the resulting cell wall changes have come under close chemical scrutiny. The Turin meeting was a focus for those currently involved in such investigations. It assessed factors controlling cell separation in a wide spectrum of different cell types under a variety of conditions.
Publisher: Springer
ISBN: 9783642741630
Category : Science
Languages : en
Pages : 449
Book Description
This NATO Advanced Research Workshop held 25-30 September, 1988 at the Villa Gualino, Turin, Italy, was the first international meeting of its kind to be devoted solely to cell separation in plants. The partial or complete dissociation of one cell from another is an integral process of differentiation. Partial cell separations are basic physiological components of the overall programme of plant development. Complete cell separations are major events in the ripening of fruits, and the shedding of plant parts. Unscheduled cell separations commonly occur when tissues are subjected to pathogenic invasion. Environmental stresses too, evoke their own separation responses. Over the past five years much new knowledge has been acquired on the regulation of gene expression in specific stages of cell differentiation. Specific molecular markers have been identified that designate the competence of cells for achieving separation. Certain of the chemical signals (hormones, elicitors) that must be emitted or perceived by cells to initiate and sustain separation, are now known to us, and the resulting cell wall changes have come under close chemical scrutiny. The Turin meeting was a focus for those currently involved in such investigations. It assessed factors controlling cell separation in a wide spectrum of different cell types under a variety of conditions.
Plant Cell Biology
Author: Randy O. Wayne
Publisher: Academic Press
ISBN: 012814372X
Category : Science
Languages : en
Pages : 748
Book Description
Plant Cell Biology, Second Edition: From Astronomy to Zoology connects the fundamentals of plant anatomy, plant physiology, plant growth and development, plant taxonomy, plant biochemistry, plant molecular biology, and plant cell biology. It covers all aspects of plant cell biology without emphasizing any one plant, organelle, molecule, or technique. Although most examples are biased towards plants, basic similarities between all living eukaryotic cells (animal and plant) are recognized and used to best illustrate cell processes. This is a must-have reference for scientists with a background in plant anatomy, plant physiology, plant growth and development, plant taxonomy, and more. - Includes chapter on using mutants and genetic approaches to plant cell biology research and a chapter on -omic technologies - Explains the physiological underpinnings of biological processes to bring original insights relating to plants - Includes examples throughout from physics, chemistry, geology, and biology to bring understanding on plant cell development, growth, chemistry and diseases - Provides the essential tools for students to be able to evaluate and assess the mechanisms involved in cell growth, chromosome motion, membrane trafficking and energy exchange
Publisher: Academic Press
ISBN: 012814372X
Category : Science
Languages : en
Pages : 748
Book Description
Plant Cell Biology, Second Edition: From Astronomy to Zoology connects the fundamentals of plant anatomy, plant physiology, plant growth and development, plant taxonomy, plant biochemistry, plant molecular biology, and plant cell biology. It covers all aspects of plant cell biology without emphasizing any one plant, organelle, molecule, or technique. Although most examples are biased towards plants, basic similarities between all living eukaryotic cells (animal and plant) are recognized and used to best illustrate cell processes. This is a must-have reference for scientists with a background in plant anatomy, plant physiology, plant growth and development, plant taxonomy, and more. - Includes chapter on using mutants and genetic approaches to plant cell biology research and a chapter on -omic technologies - Explains the physiological underpinnings of biological processes to bring original insights relating to plants - Includes examples throughout from physics, chemistry, geology, and biology to bring understanding on plant cell development, growth, chemistry and diseases - Provides the essential tools for students to be able to evaluate and assess the mechanisms involved in cell growth, chromosome motion, membrane trafficking and energy exchange
Plant Pathogenesis and Resistance
Author: Jeng-Sheng Huang
Publisher: Springer Science & Business Media
ISBN: 9401726876
Category : Science
Languages : en
Pages : 695
Book Description
Each plant-pathogen interaction involves a two-way molecular communication. On one hand, the pathogen perceives signals from the plant, secretes chemical arsenals to establish infection courts, and produces metabolites that disrupt structural integrity, alter cellular function, and circumvent host defenses. On the other hand, the plant senses the signals from the pathogen, reinforces its cell walls, and accumulates phytoalexins and pathogenesis-related proteins in an attempt to defend itself. The production of pathogenicity and virulence factors by the pathogen, the elicitation of defense mechanisms by the plant, and the dynamic interaction of the two are the focal points of this book. The book will be of interest to researchers and advanced undergraduate and graduate students in the areas of plant pathology, plant physiology, and plant biochemistry.
Publisher: Springer Science & Business Media
ISBN: 9401726876
Category : Science
Languages : en
Pages : 695
Book Description
Each plant-pathogen interaction involves a two-way molecular communication. On one hand, the pathogen perceives signals from the plant, secretes chemical arsenals to establish infection courts, and produces metabolites that disrupt structural integrity, alter cellular function, and circumvent host defenses. On the other hand, the plant senses the signals from the pathogen, reinforces its cell walls, and accumulates phytoalexins and pathogenesis-related proteins in an attempt to defend itself. The production of pathogenicity and virulence factors by the pathogen, the elicitation of defense mechanisms by the plant, and the dynamic interaction of the two are the focal points of this book. The book will be of interest to researchers and advanced undergraduate and graduate students in the areas of plant pathology, plant physiology, and plant biochemistry.
Plant Biochemistry
Author: Hans-Walter Heldt
Publisher: Academic Press
ISBN: 0120883910
Category : Medical
Languages : en
Pages : 658
Book Description
1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen in the Air to be Used for Plant Growth 12 Sulfate Assimilation Enables the Synthesis of Sulfur Containing Substances 13 Phloem Transport Distributes Photoassimilates to the Various Sites of Consumption and Storage 14 Products of Nitrate Assimilation are Deposited in Plants as Storage Proteins 15 Glycerolipids are Membrane Constituents and Function as Carbon Stores 16 Secondary Metabolites Fulfill Specific Ecological Functions in Plants 17 Large Diversity of Isoprenoids has Multiple Funtions in Plant Metabolism 18 Phenylpropanoids Comprise a Multitude of Plant Secondary Metabolites and Cell Wall Components 19 Multiple Signals Regulate the Growth and Development of Plant Organs and Enable Their Adaptation to Environmental Conditions 20 A Plant Cell has Three Different Genomes 21 Protein Biosynthesis Occurs at Different Sites of a Cell 22 Gene Technology Makes it Possible to Alter Plants to Meet Requirements of Agriculture, Nutrition, and Industry.
Publisher: Academic Press
ISBN: 0120883910
Category : Medical
Languages : en
Pages : 658
Book Description
1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen in the Air to be Used for Plant Growth 12 Sulfate Assimilation Enables the Synthesis of Sulfur Containing Substances 13 Phloem Transport Distributes Photoassimilates to the Various Sites of Consumption and Storage 14 Products of Nitrate Assimilation are Deposited in Plants as Storage Proteins 15 Glycerolipids are Membrane Constituents and Function as Carbon Stores 16 Secondary Metabolites Fulfill Specific Ecological Functions in Plants 17 Large Diversity of Isoprenoids has Multiple Funtions in Plant Metabolism 18 Phenylpropanoids Comprise a Multitude of Plant Secondary Metabolites and Cell Wall Components 19 Multiple Signals Regulate the Growth and Development of Plant Organs and Enable Their Adaptation to Environmental Conditions 20 A Plant Cell has Three Different Genomes 21 Protein Biosynthesis Occurs at Different Sites of a Cell 22 Gene Technology Makes it Possible to Alter Plants to Meet Requirements of Agriculture, Nutrition, and Industry.