Physics of Radiation Effects in Crystals

Physics of Radiation Effects in Crystals PDF Author: R.A. Johnson
Publisher: Elsevier
ISBN: 0444598227
Category : Science
Languages : en
Pages : 736

Get Book Here

Book Description
``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor materials, and radiation damage of semiconductors and superconductors.

Physics of Radiation Effects in Crystals

Physics of Radiation Effects in Crystals PDF Author: R.A. Johnson
Publisher: Elsevier
ISBN: 0444598227
Category : Science
Languages : en
Pages : 736

Get Book Here

Book Description
``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor materials, and radiation damage of semiconductors and superconductors.

Application of Particle and Laser Beams in Materials Technology

Application of Particle and Laser Beams in Materials Technology PDF Author: P. Misaelides
Publisher: Springer Science & Business Media
ISBN: 9780792333241
Category : Science
Languages : en
Pages : 702

Get Book Here

Book Description
The development of advanced materials with preselected properties is one of the main goals of materials research. Of especial interest are electronics, high-temperature and superhard materials for various applications, as well as alloys with improved wear, corrosion and mechanical resistance properties. The technical challenge connected with the production of these materials is not only associated with the development of new specialised preparation techniques but also with quality control. The energetic charged particle, electron and photon beams offer the possibility of modifying the properties of the near-surface regions of materials without seriously affecting their bulk, and provide unique analytical tools for testing their quality. Application of Particle and Laser Beams in Materials Technology provides an overview of this rapidly expanding field. Fundamental aspects concerning the interactions and collisions on atomic, nuclear and solid state scale are presented in a didactic way, along with the application of a variety of techniques for the solution of problems ranging from the development of electronics materials to corrosion research and from archaeometry to environmental protection. The book is divided into six thematic units: Fundamentals, Surface Analysis Techniques, Laser Beams in Materials Technology, Accelerator-Based Techniques in Materials Technology, Materials Modification and Synchrotron Radiation.

University Physics

University Physics PDF Author: OpenStax
Publisher:
ISBN: 9781680920451
Category : Science
Languages : en
Pages : 622

Get Book Here

Book Description
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.

Electromagnetic Processes at High Energies in Oriented Single Crystals

Electromagnetic Processes at High Energies in Oriented Single Crystals PDF Author: Vladimir Nikolaevich Ba?er
Publisher: World Scientific
ISBN: 9789810216030
Category : Science
Languages : en
Pages : 576

Get Book Here

Book Description
The book is devoted to processes at the interaction of high energy charged particles and photons with crystals. Among them are the creation of electron-positron pair by photon in crystalline field, the radiation of particles in this field and, connected with these effects, the new type of electromagnetic showers in crystals, the channeling of fast particles in crystal and channeling radiation. At high energies, the processes of quantum electrodynamics (QED) in intense external fields play an important role in crystals. The first third of the book contains a new formulation of QED in external fields which is valid for any external field, including an essentially nonuniform one and has vast applications.

Effects of Radiation on Semiconductors

Effects of Radiation on Semiconductors PDF Author: Viktor S. Vavilov
Publisher: Springer
ISBN: 1489927204
Category : Science
Languages : en
Pages : 235

Get Book Here

Book Description
The effects of electromagnetic radiation and high-energy par ticles on semiconductors can be divided into two main processes: (a) the excitation of electrons (the special case is internal ioniza tion, i. e. , the generation of excess charge carriers); and(b) dis turbance of the periodic structure of the crystal, i. e. , the forma tion of "structural radiation defects. " Naturally, investigations of the effects of radiation on semiconductors cannot be considered in isolation. Thus, for example, the problern of "radiation de fects" is part of the generalproblern of crystal lattice defects and the influence of such defects on the processes occurring in semi conductors. The same is true of photoelectric and similar phe nomena where the action of the radiation is only the start of a complex chain of nonequilibrium electronprocesses. Nevertheless, particularly from the point of view of the experimental physicist, the radiation effects discussed in the present book have inter esting features: several types of radiation may produce the same resul t (for example, ionization by photons and by charged particles) or one type of radiation may produce several effects (ionization and radiation -defect formation). The aim of the author was to consider the most typical prob lems. The subjects discussed differ widely from one another in the extent to which they have been investigated.

Radiation Processes in Crystal Solid Solutions

Radiation Processes in Crystal Solid Solutions PDF Author: Gennadi Gladyshev
Publisher: Bentham Science Publishers
ISBN: 1608052311
Category : Science
Languages : en
Pages : 108

Get Book Here

Book Description
Radiation Processes In Crystal Solid Solutions is a monograph explaining processes occurring in two classes of crystal solids (metal alloys and doped alkali halides) under irradiation by various types of radiation (alpha, beta, gamma, X-radiations, ions). While metal alloys may differ in high radiation stability, solid solutions based on alkali halides are very radiation-sensitive materials. Radiation defect production mechanisms, intrinsic and extrinsic radiation defects, a role of complexes an impurity-radiation defect which explain distinction in radiating stability of the specified classes of solid solutions are discussed in this e-book. To describe radiation induced phase transformations, two approaches are highlighted: kinetic and thermodynamic. This e-book also includes research on the effect of small radiation doses in a structurally solid phase state of a solution along with a semi-quantitative estimation of radiation effects with respect to temperature changes. This e-book should be a useful reference for advanced readers interested in the physics of radiation and solid state physics.

Point Defects in Solids

Point Defects in Solids PDF Author: James H. Crawford
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


An Introduction to X-ray Crystallography

An Introduction to X-ray Crystallography PDF Author: Michael M. Woolfson
Publisher: Cambridge University Press
ISBN: 9780521423595
Category : Medical
Languages : en
Pages : 422

Get Book Here

Book Description
A textbook for the student beginning a serious study of X-ray crystallography.

X Rays and Crystal Structure

X Rays and Crystal Structure PDF Author: William Henry Bragg
Publisher:
ISBN:
Category : Crystallography
Languages : en
Pages : 364

Get Book Here

Book Description


Electron Density and Bonding in Crystals

Electron Density and Bonding in Crystals PDF Author: V.G Tsirelson
Publisher: CRC Press
ISBN: 9780750302845
Category : Science
Languages : en
Pages : 544

Get Book Here

Book Description
Electron Density and Bonding in Crystals: Principles, Theory and X-Ray Diffraction Experiments in Solid State Physics and Chemistry provides a comprehensive, unified account of the use of diffraction techniques to determine the distribution of electrons in crystals. The book discusses theoretical and practical techniques, the application of electron density studies to chemical bonding, and the determination of the physical properties of condensed matter. The book features the authors' own key contributions to the subject as well a thorough, critical summary of the extensive literature on electron density and bonding. Logically organized, coverage ranges from the theoretical and experimental basis of electron density determination to its impact on investigations of the nature of the chemical bond and its uses in determining electromagnetic and optical properties of crystals. The main text is supplemented by appendices that provide clear, concise guidance on aspects such as systems of units, quantum theory of atomic vibrations, atomic orbitals, and creation and annihilation operators. The result is a valuable compendium of modern knowledge on electron density distributions, making this reference a standard for crystallographers, condensed matter physicists, theoretical chemists, and materials scientists.