Physics of Carbon Nanotube Devices (Micro and Nano Technologies)

Physics of Carbon Nanotube Devices (Micro and Nano Technologies) PDF Author: Lahcen Planting
Publisher:
ISBN: 9781505556537
Category :
Languages : en
Pages : 126

Get Book Here

Book Description
Nanotechnology ("nanotech") is the manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter that occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. Because of the variety of potential applications (including industrial and military), governments have invested billions of dollars in nanotechnology research. Through its National Nanotechnology Initiative, the USA has invested 3.7 billion dollars. The European Union has invested[when?] 1.2 billion and Japan 750 million dollars.

Physics of Carbon Nanotube Devices (Micro and Nano Technologies)

Physics of Carbon Nanotube Devices (Micro and Nano Technologies) PDF Author: Lahcen Planting
Publisher:
ISBN: 9781505556537
Category :
Languages : en
Pages : 126

Get Book Here

Book Description
Nanotechnology ("nanotech") is the manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter that occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. Because of the variety of potential applications (including industrial and military), governments have invested billions of dollars in nanotechnology research. Through its National Nanotechnology Initiative, the USA has invested 3.7 billion dollars. The European Union has invested[when?] 1.2 billion and Japan 750 million dollars.

Physics of Carbon Nanotube Devices

Physics of Carbon Nanotube Devices PDF Author: Francois Leonard
Publisher: William Andrew
ISBN: 0815519680
Category : Technology & Engineering
Languages : en
Pages : 411

Get Book Here

Book Description
Possibly the most impactful material in the nanotechnology arena, carbon nanotubes have spurred a tremendous amount of scientific research and development. Their superior mechanical and chemical robustness makes them easily manipulable and allows for the assembly of various types of devices, including electronic, electromechanical, opto-electronic and sensing devices.In the field of nanotube devices, however, concepts that describe the properties of conventional devices do not apply. Carbon nanotube devices behave much differently from those using traditional materials, and offer entirely new functionality. This book – designed for researchers, engineers and graduate students alike – bridges the experimental and theoretical aspects of carbon nanotube devices. It emphasizes and explains the underlying physics that govern their working principles, including applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. Many of the aspects discussed here differ significantly from those learned in books or traditional materials, and are essential for the future development of carbon nanotube technology.• Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles • Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. • Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. • Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.* Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles * Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing.* Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission* Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.

The Physics of Carbon Nanotube Devices

The Physics of Carbon Nanotube Devices PDF Author:
Publisher:
ISBN:
Category : Electronic apparatus and appliances
Languages : en
Pages :

Get Book Here

Book Description


Carbon Nanotube and Graphene Device Physics

Carbon Nanotube and Graphene Device Physics PDF Author: H.-S. Philip Wong
Publisher: Cambridge University Press
ISBN: 0521519055
Category : Science
Languages : en
Pages : 263

Get Book Here

Book Description
The first introductory textbook to explain the properties and performance of practical nanotube devices and related applications.

Aligned Carbon Nanotubes

Aligned Carbon Nanotubes PDF Author: Zhifeng Ren
Publisher: Springer Science & Business Media
ISBN: 3642304907
Category : Science
Languages : en
Pages : 310

Get Book Here

Book Description
This book gives a survey of the physics and fabrication of carbon nanotubes and their applications in optics, electronics, chemistry and biotechnology. It focuses on the structural characterization of various carbon nanotubes, fabrication of vertically or parallel aligned carbon nanotubes on substrates or in composites, physical properties for their alignment, and applications of aligned carbon nanotubes in field emission, optical antennas, light transmission, solar cells, chemical devices, bio-devices, and many others. Major fabrication methods are illustrated in detail, particularly the most widely used PECVD growth technique on which various device integration schemes are based, followed by applications such as electrical interconnects, nanodiodes, optical antennas, and nanocoax solar cells, whereas current limitations and challenges are also be discussed to lay the foundation for future developments.

Industrial Applications of Carbon Nanotubes

Industrial Applications of Carbon Nanotubes PDF Author: Huisheng Peng
Publisher: William Andrew
ISBN: 0323415318
Category : Technology & Engineering
Languages : en
Pages : 510

Get Book Here

Book Description
Industrial Applications of Carbon Nanotubes covers the current applications of carbon nanotubes in various industry sectors, from the military to visual display products, and energy harvesting and storage. It also assesses the opportunities and challenges for increased commercialization and manufacturing of carbon nanotubes in the years ahead. Real-life case studies illustrate how carbon nanotubes are used in each industry sector covered, providing a valuable resource for scientists and engineers who are involved and/or interested in carbon nanotubes in both academia and industry. The book serves as a comprehensive guide to the varied uses of carbon nanotubes for specialists in many related fields, including chemistry, physics, biology, and textiles. - Explains how carbon nanotubes can be used to improve the efficiency and performance of industrial products - Includes real-life case studies to illustrate how carbon nanotubes have been successfully employed - Explores how carbon nanotubes could be mass-manufactured in the future, and outlines the challenges that need to be overcome

Nanoelectronics: Physics, Materials and Devices

Nanoelectronics: Physics, Materials and Devices PDF Author: Angsuman Sarkar
Publisher: Elsevier
ISBN: 0323918336
Category : Technology & Engineering
Languages : en
Pages : 550

Get Book Here

Book Description
Approx.528 pagesApprox.528 pages

Carbon Nanotube Electronics

Carbon Nanotube Electronics PDF Author: Ali Javey
Publisher: Springer Science & Business Media
ISBN: 0387692851
Category : Technology & Engineering
Languages : en
Pages : 275

Get Book Here

Book Description
This book provides a complete overview of the field of carbon nanotube electronics. It covers materials and physical properties, synthesis and fabrication processes, devices and circuits, modeling, and finally novel applications of nanotube-based electronics. The book introduces fundamental device physics and circuit concepts of 1-D electronics. At the same time it provides specific examples of the state-of-the-art nanotube devices.

Nanotube Superfiber Materials

Nanotube Superfiber Materials PDF Author: Mark Schulz
Publisher: William Andrew
ISBN: 1455778648
Category : Technology & Engineering
Languages : en
Pages : 861

Get Book Here

Book Description
Nanotube Superfiber Materials refers to different forms of macroscale materials with unique properties constructed from carbon nanotubes. These materials include nanotube arrays, ribbons, scrolls, yarn, braid, and sheets. Nanotube materials are in the early stage of development and this is the first dedicated book on the subject. Transitioning from molecules to materials is a breakthrough that will positively impact almost all industries and areas of society. Key properties of superfiber materials are high flexibility and fatigue resistance, high energy absorption, high strength, good electrical conductivity, high maximum current density, reduced skin and proximity effects, high thermal conductivity, lightweight, good field emission, piezoresistive, magnetoresistive, thermoelectric, and other properties. These properties will open up the door to dozens of applications including replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others. The scope of the book covers three main areas: Part I: Processing; Part II: Properties; and Part III: Applications. Processing involves nanotube synthesis and macro scale material formation methods. Properties covers the mechanical, electrical, chemical and other properties of nanotubes and macroscale materials. Different approaches to growing high quality long nanotubes and spinning the nanotubes into yarn are explained in detail. The best ideas are collected from all around the world including commercial approaches. Applications of nanotube superfiber cover a huge field and provides a broad survey of uses. The book gives a broad overview starting from bioelectronics to carbon industrial machines. - First book to explore the production and applications of macro-scale materials made from nano-scale particles - Sets out the processes for producing macro-scale materials from carbon nanotubes, and describes the unique properties of these materials - Potential applications for CNT fiber/yarn include replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others

Carbon Nanotechnology

Carbon Nanotechnology PDF Author: Liming Dai
Publisher: Elsevier
ISBN: 0080459323
Category : Technology & Engineering
Languages : en
Pages : 751

Get Book Here

Book Description
Nanotechnology is no longer a merely social talking point and is beginning to affect the lives of everyone. Carbon nanotechnology as a major shaper of new nanotechnologies has evolved into a truly interdisciplinary field, which encompasses chemistry, physics, biology, medicine, materials science and engineering. This is a field in which a huge amount of literature has been generated within recent years, and the number of publications is still increasing every year. Carbon Nanotechnology aims to provide a timely coverage of the recent development in the field with updated reviews and remarks by world-renowned experts. Intended to be an exposition of cutting-edge research and development rather than a kind of conference proceeding, Carbon Nanotechnology will be very useful not only to experienced scientists and engineers, who wish to broaden their knowledge of the wide-ranging nanotechnology and/or to develop practical devices, but also to graduate and senior undergraduate students who look to make their mark in this field of the future.· A comprehensive treatment from materials chemistry and structure-property to practical applications· Offers an in-depth analysis of various carbon nanotechnologies from both fundamental and practical perspectives· An easily accessible assessment of the materials properties and device performances based on all of the major classes of carbon nanomaterials, including: carbon fiber; diamond; C60; and carbon nanotubes· A concise compilation of the practical applications of carbon nanotechnologies from polymer-carbon nanocomposites to sensors, electron emitters, and molecular electronics