Physical Mathematics

Physical Mathematics PDF Author: Kevin Cahill
Publisher: Cambridge University Press
ISBN: 1107310733
Category : Science
Languages : en
Pages : 685

Get Book Here

Book Description
Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.

Mathematics and the Physical World

Mathematics and the Physical World PDF Author: Morris Kline
Publisher: Courier Corporation
ISBN: 0486136310
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
Stimulating account of development of mathematics from arithmetic, algebra, geometry and trigonometry, to calculus, differential equations, and non-Euclidean geometries. Also describes how math is used in optics, astronomy, and other phenomena.

Introduction to Physical Mathematics

Introduction to Physical Mathematics PDF Author: Philip G. Harper
Publisher: CUP Archive
ISBN: 9780521269087
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
Directed primarily at college and university undergraduates, this book covers at basic level the essential applications of mathematics to the physical sciences. It contains all the usual topics covered in a first-year course such as vectors, matrices, differential equations, basic mathematical functions and their analysis, and power series. There is a strong emphasis on qualitative understanding (such as curve sketching) and practical methods of solution. The latter take due account of the impact of computers on the subject. The principles of mathematical expression are illustrated by copious examples taken from a wide range of topics in physics and chemistry. Each of the short chapters concludes with a summary and a large number of problems.

Topics in Physical Mathematics

Topics in Physical Mathematics PDF Author: Kishore Marathe
Publisher: Springer Science & Business Media
ISBN: 1848829396
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
As many readers will know, the 20th century was a time when the fields of mathematics and the sciences were seen as two separate entities. Caused by the rapid growth of the physical sciences and an increasing abstraction in mathematical research, each party, physicists and mathematicians alike, suffered a misconception; not only of the opposition’s theoretical underpinning, but of how the two subjects could be intertwined and effectively utilized. One sub-discipline that played a part in the union of the two subjects is Theoretical Physics. Breaking it down further came the fundamental theories, Relativity and Quantum theory, and later on Yang-Mills theory. Other areas to emerge in this area are those derived from the works of Donaldson, Chern-Simons, Floer-Fukaya, and Seiberg-Witten. Aimed at a wide audience, Physical Topics in Mathematics demonstrates how various physical theories have played a crucial role in the developments of Mathematics and in particular, Geometric Topology. Issues are studied in great detail, and the book steadfastly covers the background of both Mathematics and Theoretical Physics in an effort to bring the reader to a deeper understanding of their interaction. Whilst the world of Theoretical Physics and Mathematics is boundless; it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader through the world of Physical Mathematics; leaving them with a choice of which realm they wish to visit next.

Mathematics for the Physical Sciences

Mathematics for the Physical Sciences PDF Author: Herbert S Wilf
Publisher: Courier Corporation
ISBN: 0486153347
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Topics include vector spaces and matrices; orthogonal functions; polynomial equations; asymptotic expansions; ordinary differential equations; conformal mapping; and extremum problems. Includes exercises and solutions. 1962 edition.

Mathematics for the Physical Sciences

Mathematics for the Physical Sciences PDF Author: Laurent Schwartz
Publisher: Courier Dover Publications
ISBN: 0486466620
Category : Mathematics
Languages : en
Pages : 369

Get Book Here

Book Description
Concise treatment of mathematical entities employs examples from the physical sciences. Topics include distribution theory, Fourier series, Laplace transforms, wave and heat conduction equations, and gamma and Bessel functions. 1966 edition.

Mathematics for Physical Science and Engineering

Mathematics for Physical Science and Engineering PDF Author: Frank E. Harris
Publisher: Academic Press
ISBN: 0128010495
Category : Mathematics
Languages : en
Pages : 787

Get Book Here

Book Description
Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. - Clarifies each important concept to students through the use of a simple example and often an illustration - Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) - Shows how symbolic computing enables solving a broad range of practical problems

Mathematics, Ideas and the Physical Real

Mathematics, Ideas and the Physical Real PDF Author: Albert Lautman
Publisher: A&C Black
ISBN: 1441146547
Category : Philosophy
Languages : en
Pages : 354

Get Book Here

Book Description
Albert Lautman (1908-1944) was a French philosopher of mathematics whose work played a crucial role in the history of contemporary French philosophy. His ideas have had an enormous influence on key contemporary thinkers including Gilles Deleuze and Alain Badiou, for whom he is a major touchstone in the development of their own engagements with mathematics. Mathematics, Ideas and the Physical Real presents the first English translation of Lautman's published works between 1933 and his death in 1944. Rather than being preoccupied with the relation of mathematics to logic or with the problems of foundation, which have dominated philosophical reflection on mathematics, Lautman undertakes to develop an understanding of the broader structure of mathematics and its evolution. The two powerful ideas that are constants throughout his work, and which have dominated subsequent developments in mathematics, are the concept of mathematical structure and the idea of the essential unity underlying the apparent multiplicity of mathematical disciplines. This collection of his major writings offers readers a much-needed insight into his influence on the development of mathematics and philosophy.

Mathematics for Physics

Mathematics for Physics PDF Author: Michael Stone
Publisher: Cambridge University Press
ISBN: 1139480618
Category : Science
Languages : en
Pages : 821

Get Book Here

Book Description
An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.

Useful Mathematical and Physical Formulae

Useful Mathematical and Physical Formulae PDF Author: Matthew Watkins
Publisher: Bloomsbury Publishing USA
ISBN: 0802713807
Category : Mathematics
Languages : en
Pages : 68

Get Book Here

Book Description
Collected in this book are commonly used formulae for studies such as quadratics, calculus and trigonometry; in addition are simplified explanations of Newton's Laws of Gravity and Snell's Laws of Refraction. A glossary, a table of mathematical and physical constants, and a listing of Imperial and Metric conversions is also included.