Author: Georgios Roumpos
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 157
Book Description
In a homogeneous two-dimensional system at non-zero temperature, although there can be no ordering of infinite range, an ordered superfluid phase is expected to occur for a Bose liquid. Theory predicts that, in this phase, the correlation function decays with distance as a power law, and quantum vortices are bound to antivortices to form molecular-like pairs. We study the relevance of this theory to microcavity exciton polaritons. These are two-dimensional bosonic quasiparticles formed as a superposition of a microcavity photon and a semiconductor quantum well exciton, and have been shown to condense at high enough densities. Because of the short lifetime, equilibrium is not established, but we instead probe the steady state of the system, in which particles are continuously injected from a pumping reservoir. We employ a Michelson interferometer setup to measure the first order spatial correlation function of such a condensate. The gaussian form of the short-distance decay allows us to define an effective thermal de Broglie wavelength, although the system is not in thermal equilibrium. The long-distance decay is measured to be a power law with an exponent in the range 0.9-1.2, larger than is possible in equilibrium. Our non-equilibrium theory suggests that this can be attributed to laser pumping noise. We also present our observation of a single vortex-antivortex pair in a condensate of the appropriate size. Pairs are generated due to pumping noise, and are formed sequentially at the same point due to the inhomogeneous pumping spot profile. They are revealed in the time-integrated phase maps acquired using Michelson interferometry. Our results suggest that vortex-antivortex pairs can be created in a two-dimensional condensate without rotation or stirring. The observed correlated motion of a vortex and antivortex imply that vortex-antivortex pairs do not dissociate, which is consistent with the measured power law decay of the spatial correlation function. These two experiments uniquely describe the condensate phase fluctuations and provide stringent tests to theories of nonequilibrium condensation. They also highlight the exciton polariton condensate as a very well characterized system showing mesoscopic coherence and deepen our understanding of fundamental two-dimensional bosonic physics. Progress in this field is expected to lead towards long-sought applications such as quantum simulation or low-threshold laser sources.
Phase Fluctuations in Microcavity Exciton Polariton Condensation
Author: Georgios Roumpos
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 157
Book Description
In a homogeneous two-dimensional system at non-zero temperature, although there can be no ordering of infinite range, an ordered superfluid phase is expected to occur for a Bose liquid. Theory predicts that, in this phase, the correlation function decays with distance as a power law, and quantum vortices are bound to antivortices to form molecular-like pairs. We study the relevance of this theory to microcavity exciton polaritons. These are two-dimensional bosonic quasiparticles formed as a superposition of a microcavity photon and a semiconductor quantum well exciton, and have been shown to condense at high enough densities. Because of the short lifetime, equilibrium is not established, but we instead probe the steady state of the system, in which particles are continuously injected from a pumping reservoir. We employ a Michelson interferometer setup to measure the first order spatial correlation function of such a condensate. The gaussian form of the short-distance decay allows us to define an effective thermal de Broglie wavelength, although the system is not in thermal equilibrium. The long-distance decay is measured to be a power law with an exponent in the range 0.9-1.2, larger than is possible in equilibrium. Our non-equilibrium theory suggests that this can be attributed to laser pumping noise. We also present our observation of a single vortex-antivortex pair in a condensate of the appropriate size. Pairs are generated due to pumping noise, and are formed sequentially at the same point due to the inhomogeneous pumping spot profile. They are revealed in the time-integrated phase maps acquired using Michelson interferometry. Our results suggest that vortex-antivortex pairs can be created in a two-dimensional condensate without rotation or stirring. The observed correlated motion of a vortex and antivortex imply that vortex-antivortex pairs do not dissociate, which is consistent with the measured power law decay of the spatial correlation function. These two experiments uniquely describe the condensate phase fluctuations and provide stringent tests to theories of nonequilibrium condensation. They also highlight the exciton polariton condensate as a very well characterized system showing mesoscopic coherence and deepen our understanding of fundamental two-dimensional bosonic physics. Progress in this field is expected to lead towards long-sought applications such as quantum simulation or low-threshold laser sources.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 157
Book Description
In a homogeneous two-dimensional system at non-zero temperature, although there can be no ordering of infinite range, an ordered superfluid phase is expected to occur for a Bose liquid. Theory predicts that, in this phase, the correlation function decays with distance as a power law, and quantum vortices are bound to antivortices to form molecular-like pairs. We study the relevance of this theory to microcavity exciton polaritons. These are two-dimensional bosonic quasiparticles formed as a superposition of a microcavity photon and a semiconductor quantum well exciton, and have been shown to condense at high enough densities. Because of the short lifetime, equilibrium is not established, but we instead probe the steady state of the system, in which particles are continuously injected from a pumping reservoir. We employ a Michelson interferometer setup to measure the first order spatial correlation function of such a condensate. The gaussian form of the short-distance decay allows us to define an effective thermal de Broglie wavelength, although the system is not in thermal equilibrium. The long-distance decay is measured to be a power law with an exponent in the range 0.9-1.2, larger than is possible in equilibrium. Our non-equilibrium theory suggests that this can be attributed to laser pumping noise. We also present our observation of a single vortex-antivortex pair in a condensate of the appropriate size. Pairs are generated due to pumping noise, and are formed sequentially at the same point due to the inhomogeneous pumping spot profile. They are revealed in the time-integrated phase maps acquired using Michelson interferometry. Our results suggest that vortex-antivortex pairs can be created in a two-dimensional condensate without rotation or stirring. The observed correlated motion of a vortex and antivortex imply that vortex-antivortex pairs do not dissociate, which is consistent with the measured power law decay of the spatial correlation function. These two experiments uniquely describe the condensate phase fluctuations and provide stringent tests to theories of nonequilibrium condensation. They also highlight the exciton polariton condensate as a very well characterized system showing mesoscopic coherence and deepen our understanding of fundamental two-dimensional bosonic physics. Progress in this field is expected to lead towards long-sought applications such as quantum simulation or low-threshold laser sources.
Physics of Quantum Fluids
Author: Alberto Bramati
Publisher: Springer Science & Business Media
ISBN: 3642375693
Category : Science
Languages : en
Pages : 417
Book Description
The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.
Publisher: Springer Science & Business Media
ISBN: 3642375693
Category : Science
Languages : en
Pages : 417
Book Description
The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.
Microcavities
Author: Alexey Kavokin
Publisher: OUP Oxford
ISBN: 0191620734
Category : Science
Languages : en
Pages : 487
Book Description
Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.
Publisher: OUP Oxford
ISBN: 0191620734
Category : Science
Languages : en
Pages : 487
Book Description
Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.
Semiconductor Quantum Science and Technology
Author:
Publisher: Academic Press
ISBN: 0128237740
Category : Science
Languages : en
Pages : 484
Book Description
Semiconductor quantum science and technology is exploring the exciting and emerging prospects of integrating quantum functionality on semiconductor platforms to convert current information technology into quantum information technology. The past twenty years have led to incredible advances in this field. This book brings together the leading scientists who present the main achievements and challenges by reviewing and motivating the state-of-the-art at a tutorial level. The key challenges include creating quantum-light sources, quantum information processing via strong light-matter interaction, discovering new quantum materials as well as quasiparticles, and determining new quantum spectroscopic methodologies for superior control of quantum phenomena. As an important step, integration of these solutions on a semiconductor chip is discussed, and outlook for the future of semiconductor quantum science and technology is given. - Leading experts present their vision on semiconductor quantum science and technology - All aspects needed to realize semiconductor quantum science and technology are explained - Quantum semiconductors from overviewed a tutorial introduction to the state-of-the-art
Publisher: Academic Press
ISBN: 0128237740
Category : Science
Languages : en
Pages : 484
Book Description
Semiconductor quantum science and technology is exploring the exciting and emerging prospects of integrating quantum functionality on semiconductor platforms to convert current information technology into quantum information technology. The past twenty years have led to incredible advances in this field. This book brings together the leading scientists who present the main achievements and challenges by reviewing and motivating the state-of-the-art at a tutorial level. The key challenges include creating quantum-light sources, quantum information processing via strong light-matter interaction, discovering new quantum materials as well as quasiparticles, and determining new quantum spectroscopic methodologies for superior control of quantum phenomena. As an important step, integration of these solutions on a semiconductor chip is discussed, and outlook for the future of semiconductor quantum science and technology is given. - Leading experts present their vision on semiconductor quantum science and technology - All aspects needed to realize semiconductor quantum science and technology are explained - Quantum semiconductors from overviewed a tutorial introduction to the state-of-the-art
Bose Einstein Condensation of Excitons and Polaritons
Author: Sunipa Som
Publisher: Bentham Science Publishers
ISBN: 9815165410
Category : Science
Languages : en
Pages : 141
Book Description
This reference book explains the fundamentals of Bose Einstein Condensation (BEC) in excitons and polaritons. It presents five chapters exploring fundamental concepts and recent developments on the subject. Starting with a historical overview of BEC, the book progresses into the origins and behaviors of excitons and polaritons. Chapters also cover the unique thermalization and relaxation kinetics of excitons, and the distinctive features of polaritons, such as lasing, superfluidity, and quantized vortices. The chapters dedicated to BEC in excitons and polaritons detail experimental techniques, theoretical modeling, recent advancements, and practical applications in a simplified way for beginners. This book serves as a resource for researchers, physicists, and students interested in the phenomena of BEC, providing insights into both the theoretical foundations and the practical implications of excitons and polaritons.
Publisher: Bentham Science Publishers
ISBN: 9815165410
Category : Science
Languages : en
Pages : 141
Book Description
This reference book explains the fundamentals of Bose Einstein Condensation (BEC) in excitons and polaritons. It presents five chapters exploring fundamental concepts and recent developments on the subject. Starting with a historical overview of BEC, the book progresses into the origins and behaviors of excitons and polaritons. Chapters also cover the unique thermalization and relaxation kinetics of excitons, and the distinctive features of polaritons, such as lasing, superfluidity, and quantized vortices. The chapters dedicated to BEC in excitons and polaritons detail experimental techniques, theoretical modeling, recent advancements, and practical applications in a simplified way for beginners. This book serves as a resource for researchers, physicists, and students interested in the phenomena of BEC, providing insights into both the theoretical foundations and the practical implications of excitons and polaritons.
Exciton Polaritons in Microcavities
Author: Daniele Sanvitto
Publisher: Springer Science & Business Media
ISBN: 3642241867
Category : Science
Languages : en
Pages : 416
Book Description
In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.
Publisher: Springer Science & Business Media
ISBN: 3642241867
Category : Science
Languages : en
Pages : 416
Book Description
In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.
Universal Themes of Bose-Einstein Condensation
Author: Nick P. Proukakis
Publisher: Cambridge University Press
ISBN: 1107085691
Category : Science
Languages : en
Pages : 663
Book Description
Covering general theoretical concepts and the research to date, this book demonstrates that Bose-Einstein condensation is a truly universal phenomenon.
Publisher: Cambridge University Press
ISBN: 1107085691
Category : Science
Languages : en
Pages : 663
Book Description
Covering general theoretical concepts and the research to date, this book demonstrates that Bose-Einstein condensation is a truly universal phenomenon.
Quantum Gases
Author: Nick Proukakis
Publisher: World Scientific
ISBN: 1848168128
Category : Science
Languages : en
Pages : 579
Book Description
This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
Publisher: World Scientific
ISBN: 1848168128
Category : Science
Languages : en
Pages : 579
Book Description
This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
Cavity Polaritons
Author: Alexey Kavokin
Publisher: Elsevier
ISBN: 008048137X
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Volume 32 of the series addresses one of the most rapidly developing research fields in physics: microcavities. Microcavities form a base for fabrication of opto-electronic devices of XXI century, in particular polariton lasers based on a new physical principle with respect to conventional lasers proposed by Einstein in 1917. This book overviews a theory of all major phenomena linked microcavities and exciton-polaritons and is oriented to the reader having no background in solid state theory as well as to the advanced readers interested in theory of exciton-polaritons in microcavities. All major experimental discoveries in the field are addressed as well.·The book is oriented to a general reader and is easy to read for a non-specialist.·Contains an overview of the most essential effects in physics of microcavities experimentally observed and theoretically predicted during the recent decade such as:. ·Bose-Einstein condensation at room temperature.·Lasers without inversion of population.·Microcavity boom: optics of the XXI century!·Frequently asked questions on microcavities and responses without formulas. ·Half-light-half-matter quasi-particles: base for the future optoelectronic devices
Publisher: Elsevier
ISBN: 008048137X
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Volume 32 of the series addresses one of the most rapidly developing research fields in physics: microcavities. Microcavities form a base for fabrication of opto-electronic devices of XXI century, in particular polariton lasers based on a new physical principle with respect to conventional lasers proposed by Einstein in 1917. This book overviews a theory of all major phenomena linked microcavities and exciton-polaritons and is oriented to the reader having no background in solid state theory as well as to the advanced readers interested in theory of exciton-polaritons in microcavities. All major experimental discoveries in the field are addressed as well.·The book is oriented to a general reader and is easy to read for a non-specialist.·Contains an overview of the most essential effects in physics of microcavities experimentally observed and theoretically predicted during the recent decade such as:. ·Bose-Einstein condensation at room temperature.·Lasers without inversion of population.·Microcavity boom: optics of the XXI century!·Frequently asked questions on microcavities and responses without formulas. ·Half-light-half-matter quasi-particles: base for the future optoelectronic devices
Novel Superfluids
Author: Karl-Heinz Bennemann
Publisher: OUP Oxford
ISBN: 0191650196
Category : Science
Languages : en
Pages : 641
Book Description
This book reports on the latest developments in the field of Superfluidity. The phenomenon has had a tremendous impact on the fundamental sciences as well as a host of technologies. It began with the discovery of superconductivity in mercury in 1911, which was ultimately described theoretically by the theory of Bardeen Cooper and Schriever (BCS) in 1957. The analogous phenomena, superfluidity, was discovered in helium in 1938 and tentatively explained shortly thereafter as arising from a Bose-Einstein Condensation (BEC) by London. But the importance of superfluidity, and the range of systems in which it occurs, has grown enormously. In addition to metals and the helium liquids the phenomena has now been observed for photons in cavities, excitons in semiconductors, magnons in certain materials, and cold gasses trapped in high vacuum. It very likely exist for neutrons in a neutron star and, possibly, in a conjectured quark state at their center. Even the Universe itself can be regarded as being in a kind of superfluid state. All these topics are discussed by experts in the respective subfields.
Publisher: OUP Oxford
ISBN: 0191650196
Category : Science
Languages : en
Pages : 641
Book Description
This book reports on the latest developments in the field of Superfluidity. The phenomenon has had a tremendous impact on the fundamental sciences as well as a host of technologies. It began with the discovery of superconductivity in mercury in 1911, which was ultimately described theoretically by the theory of Bardeen Cooper and Schriever (BCS) in 1957. The analogous phenomena, superfluidity, was discovered in helium in 1938 and tentatively explained shortly thereafter as arising from a Bose-Einstein Condensation (BEC) by London. But the importance of superfluidity, and the range of systems in which it occurs, has grown enormously. In addition to metals and the helium liquids the phenomena has now been observed for photons in cavities, excitons in semiconductors, magnons in certain materials, and cold gasses trapped in high vacuum. It very likely exist for neutrons in a neutron star and, possibly, in a conjectured quark state at their center. Even the Universe itself can be regarded as being in a kind of superfluid state. All these topics are discussed by experts in the respective subfields.