Methods and Applications of Singular Perturbations

Methods and Applications of Singular Perturbations PDF Author: Ferdinand Verhulst
Publisher: Springer Science & Business Media
ISBN: 0387283137
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach

Methods and Applications of Singular Perturbations

Methods and Applications of Singular Perturbations PDF Author: Ferdinand Verhulst
Publisher: Springer Science & Business Media
ISBN: 0387283137
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach

Singular Perturbations and Boundary Layers

Singular Perturbations and Boundary Layers PDF Author: Gung-Min Gie
Publisher: Springer
ISBN: 3030006387
Category : Mathematics
Languages : en
Pages : 424

Get Book Here

Book Description
Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the domains that are called boundary layers or internal layers if the layer is located inside the domain. Important physical phenomena occur in boundary layers. The most common boundary layers appear in fluid mechanics, e.g., the flow of air around an airfoil or a whole airplane, or the flow of air around a car. Also in many instances in geophysical fluid mechanics, like the interface of air and earth, or air and ocean. This self-contained monograph is devoted to the study of certain classes of singular perturbation problems mostly related to thermic, fluid mechanics and optics and where mostly elliptic or parabolic equations in a bounded domain are considered. This book is a fairly unique resource regarding the rigorous mathematical treatment of boundary layer problems. The explicit methodology developed in this book extends in many different directions the concept of correctors initially introduced by J. L. Lions, and in particular the lower- and higher-order error estimates of asymptotic expansions are obtained in the setting of functional analysis. The review of differential geometry and treatment of boundary layers in a curved domain is an additional strength of this book. In the context of fluid mechanics, the outstanding open problem of the vanishing viscosity limit of the Navier-Stokes equations is investigated in this book and solved for a number of particular, but physically relevant cases. This book will serve as a unique resource for those studying singular perturbations and boundary layer problems at the advanced graduate level in mathematics or applied mathematics and may be useful for practitioners in other related fields in science and engineering such as aerodynamics, fluid mechanics, geophysical fluid mechanics, acoustics and optics.

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition) PDF Author: John J H Miller
Publisher: World Scientific
ISBN: 9814452777
Category : Mathematics
Languages : en
Pages : 191

Get Book Here

Book Description
Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.

Singularly Perturbed Differential Equations

Singularly Perturbed Differential Equations PDF Author: Herbert Goering
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112735935
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
No detailed description available for "Singularly Perturbed Differential Equations".

Geometric Singular Perturbation Theory Beyond the Standard Form

Geometric Singular Perturbation Theory Beyond the Standard Form PDF Author: Martin Wechselberger
Publisher: Springer Nature
ISBN: 3030363996
Category : Mathematics
Languages : en
Pages : 143

Get Book Here

Book Description
This volume provides a comprehensive review of multiple-scale dynamical systems. Mathematical models of such multiple-scale systems are considered singular perturbation problems, and this volume focuses on the geometric approach known as Geometric Singular Perturbation Theory (GSPT). It is the first of its kind that introduces the GSPT in a coordinate-independent manner. This is motivated by specific examples of biochemical reaction networks, electronic circuit and mechanic oscillator models and advection-reaction-diffusion models, all with an inherent non-uniform scale splitting, which identifies these examples as singular perturbation problems beyond the standard form. The contents cover a general framework for this GSPT beyond the standard form including canard theory, concrete applications, and instructive qualitative models. It contains many illustrations and key pointers to the existing literature. The target audience are senior undergraduates, graduate students and researchers interested in using the GSPT toolbox in nonlinear science, either from a theoretical or an application point of view. Martin Wechselberger is Professor at the School of Mathematics & Statistics, University of Sydney, Australia. He received the J.D. Crawford Prize in 2017 by the Society for Industrial and Applied Mathematics (SIAM) for achievements in the field of dynamical systems with multiple time-scales.

Algebraic Analysis of Singular Perturbation Theory

Algebraic Analysis of Singular Perturbation Theory PDF Author: Takahiro Kawai
Publisher: American Mathematical Soc.
ISBN: 9780821835470
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main method used is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. This volume is suitable for graduate students and researchers interested in differential equations and special functions.

Singular Perturbation Methods for Ordinary Differential Equations

Singular Perturbation Methods for Ordinary Differential Equations PDF Author: Robert E., Jr. O'Malley
Publisher: Springer Science & Business Media
ISBN: 1461209773
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
This book results from various lectures given in recent years. Early drafts were used for several single semester courses on singular perturbation meth ods given at Rensselaer, and a more complete version was used for a one year course at the Technische Universitat Wien. Some portions have been used for short lecture series at Universidad Central de Venezuela, West Vir ginia University, the University of Southern California, the University of California at Davis, East China Normal University, the University of Texas at Arlington, Universita di Padova, and the University of New Hampshire, among other places. As a result, I've obtained lots of valuable feedback from students and listeners, for which I am grateful. This writing continues a pattern. Earlier lectures at Bell Laboratories, at the University of Edin burgh and New York University, and at the Australian National University led to my earlier works (1968, 1974, and 1978). All seem to have been useful for the study of singular perturbations, and I hope the same will be true of this monograph. I've personally learned much from reading and analyzing the works of others, so I would especially encourage readers to treat this book as an introduction to a diverse and exciting literature. The topic coverage selected is personal and reflects my current opin ions. An attempt has been made to encourage a consistent method of ap proaching problems, largely through correcting outer limits in regions of rapid change. Formal proofs of correctness are not emphasized.

Introduction to Singular Perturbations

Introduction to Singular Perturbations PDF Author: Robert E. Jr. O'Malley
Publisher: Elsevier
ISBN: 0323162274
Category : Mathematics
Languages : en
Pages : 215

Get Book Here

Book Description
Introduction to Singular Perturbations provides an overview of the fundamental techniques for obtaining asymptomatic solutions to boundary value problems. This text explores singular perturbation techniques, which are among the basic tools of several applied scientists. This book is organized into eight chapters, wherein Chapter 1 discusses the method of matched asymptomatic expansions, which has been frequently applied to several physical problems involving singular perturbations. Chapter 2 considers the nonlinear initial value problem to illustrate the regular perturbation method, and Chapter 3 explains how to construct asymptotic solutions for general linear equations. Chapter 4 discusses scalar equations and nonlinear system, whereas Chapters 5 and 6 explain the contrasts for initial value problems where the outer expansion cannot be determined without obtaining the initial values of the boundary layer correction. Chapters 7 and 8 deal with boundary value problem that arises in the study of adiabatic tubular chemical flow reactors with axial diffusion. This monograph is a valuable resource for applied mathematicians, engineers, researchers, students, and readers whose interests span a variety of fields.

Introduction to Perturbation Methods

Introduction to Perturbation Methods PDF Author: Mark H. Holmes
Publisher: Springer Science & Business Media
ISBN: 1461253470
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
This introductory graduate text is based on a graduate course the author has taught repeatedly over the last ten years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and goes on to cover such traditional topics as boundary layers and multiple scales. However, it also contains material arising from current research interest, including homogenisation, slender body theory, symbolic computing, and discrete equations. Many of the excellent exercises are derived from problems of up-to-date research and are drawn from a wide range of application areas.

Singular Perturbations and Asymptotics

Singular Perturbations and Asymptotics PDF Author: Richard E. Meyer
Publisher: Academic Press
ISBN: 1483264572
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
Mathematics Research Center Symposia and Advanced Seminar Series: Singular Perturbations and Asymptotics covers the lectures presented at an Advanced Seminar on Singular Perturbation and Asymptotics, held in Madison, Wisconsin on May 28-30, 1980 under the auspices of the Mathematics Research Center of the University of Wisconsin—Madison. The book focuses on the processes, methodologies, reactions, and principles involved in singular perturbations and asymptotics, including boundary value problems, equations, perturbations, water waves, and gas dynamics. The selection first elaborates on basic concepts in the analysis of singular perturbations, limit process expansions and approximate equations, and results on singularly perturbed boundary value problems. Discussions focus on quasi-linear and nonlinear problems, semilinear systems, water waves, expansion in gas dynamics, asymptotic matching principles, and classical perturbation analysis. The text then takes a look at multiple solutions of singularly perturbed systems in the conditionally stable case and singular perturbations, stochastic differential equations, and applications. The book ponders on connection problems in the parameterless case; general connection-formula problem for linear differential equations of the second order; and turning-point problems for ordinary differential equations of hydrodynamic type. Topics include the comparison equation method, boundary layer flows, compound matrix method, asymptotic solution of the connection-formula problem, and higher order equations. The selection is a valuable source of information for researchers interested in singular perturbations and asymptotics.