Author: Colin John Martin
Publisher:
ISBN: 9780750321983
Category : MEDICAL
Languages : en
Pages :
Book Description
Arrangements for personal monitoring have evolved as dose limits and practices using radiation have developed. Therefore, new approaches involving more personal dosimetry are required, and methods are needed that can be used to predict probable dose levels so that risk assessments can be prepared to determine the level of dose monitoring for individual staff members. The authors set out recommendations designed to help radiation protection practitioners and healthcare workers assess exposure levels for personnel and determine monitoring requirements based on established rules. This book is essential reading for medical physicists in radiation protection, diagnostic radiology and nuclear medicine, as well as radiographers and technologists due to changes in global dosimetry requirements. Additionally, it presents guidelines for medical physicists and others using radiation. Part of IPEM-IOP Series in Physics and Engineering in Medicine and Biology.
Guidance on the Personal Monitoring Requirements for Personnel Working in Healthcare
Author: Colin John Martin
Publisher:
ISBN: 9780750321983
Category : MEDICAL
Languages : en
Pages :
Book Description
Arrangements for personal monitoring have evolved as dose limits and practices using radiation have developed. Therefore, new approaches involving more personal dosimetry are required, and methods are needed that can be used to predict probable dose levels so that risk assessments can be prepared to determine the level of dose monitoring for individual staff members. The authors set out recommendations designed to help radiation protection practitioners and healthcare workers assess exposure levels for personnel and determine monitoring requirements based on established rules. This book is essential reading for medical physicists in radiation protection, diagnostic radiology and nuclear medicine, as well as radiographers and technologists due to changes in global dosimetry requirements. Additionally, it presents guidelines for medical physicists and others using radiation. Part of IPEM-IOP Series in Physics and Engineering in Medicine and Biology.
Publisher:
ISBN: 9780750321983
Category : MEDICAL
Languages : en
Pages :
Book Description
Arrangements for personal monitoring have evolved as dose limits and practices using radiation have developed. Therefore, new approaches involving more personal dosimetry are required, and methods are needed that can be used to predict probable dose levels so that risk assessments can be prepared to determine the level of dose monitoring for individual staff members. The authors set out recommendations designed to help radiation protection practitioners and healthcare workers assess exposure levels for personnel and determine monitoring requirements based on established rules. This book is essential reading for medical physicists in radiation protection, diagnostic radiology and nuclear medicine, as well as radiographers and technologists due to changes in global dosimetry requirements. Additionally, it presents guidelines for medical physicists and others using radiation. Part of IPEM-IOP Series in Physics and Engineering in Medicine and Biology.
Optically Stimulated Luminescence Dosimetry
Author: L. Boetter-Jensen
Publisher: Elsevier
ISBN: 008053807X
Category : Science
Languages : en
Pages : 375
Book Description
Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.The book is designed for researchers and radiation dosimetry practitioners alike. It delves into the detailed theory of the process from the point of view of stimulated relaxation phenomena, describing the energy storage and release processes phenomenologically and developing detailed mathematical descriptions to enable a quantitative understanding of the observed phenomena. The various stimulation modes (continuous wave, pulsed, or linear modulation) are introduced and compared. The properties of the most important synthetic OSL materials beginning with the dominant carbon-doped Al2O3, and moving through discussions of other, less-well studied but nevertheless important, or potentially important, materials. The OSL properties of the two most important natural OSL dosimetry material types, namely quartz and feldspars are discussed in depth. The applications chapters deal with the use of OSL in personal, environmental, medical and UV dosimetry, geological dating and retrospective dosimetry (accident dosimetry and dating). Finally the developments in instrumentation that have occurred over the past decade or more are described. The book will find use in those laboratories within academia, national institutes and the private sector where research and applications in radiation dosimetry using luminescence are being conducted. Potential readers include personnel involved in radiation protection practice and research, hospitals, nuclear power stations, radiation clean-up and remediation, food irradiation and materials processing, security monitoring, geological and archaeological dating, luminescence studies of minerals, etc.
Publisher: Elsevier
ISBN: 008053807X
Category : Science
Languages : en
Pages : 375
Book Description
Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.The book is designed for researchers and radiation dosimetry practitioners alike. It delves into the detailed theory of the process from the point of view of stimulated relaxation phenomena, describing the energy storage and release processes phenomenologically and developing detailed mathematical descriptions to enable a quantitative understanding of the observed phenomena. The various stimulation modes (continuous wave, pulsed, or linear modulation) are introduced and compared. The properties of the most important synthetic OSL materials beginning with the dominant carbon-doped Al2O3, and moving through discussions of other, less-well studied but nevertheless important, or potentially important, materials. The OSL properties of the two most important natural OSL dosimetry material types, namely quartz and feldspars are discussed in depth. The applications chapters deal with the use of OSL in personal, environmental, medical and UV dosimetry, geological dating and retrospective dosimetry (accident dosimetry and dating). Finally the developments in instrumentation that have occurred over the past decade or more are described. The book will find use in those laboratories within academia, national institutes and the private sector where research and applications in radiation dosimetry using luminescence are being conducted. Potential readers include personnel involved in radiation protection practice and research, hospitals, nuclear power stations, radiation clean-up and remediation, food irradiation and materials processing, security monitoring, geological and archaeological dating, luminescence studies of minerals, etc.
Personal Radiation Monitor
Author: R. H. Dilworth
Publisher:
ISBN:
Category : Electric radiation
Languages : en
Pages : 30
Book Description
Publisher:
ISBN:
Category : Electric radiation
Languages : en
Pages : 30
Book Description
Dosimetry for Criticality Accidents
Author: International Atomic Energy Agency
Publisher:
ISBN:
Category : Accidents
Languages : en
Pages : 216
Book Description
Publisher:
ISBN:
Category : Accidents
Languages : en
Pages : 216
Book Description
Radiation Oncology Physics
Author: International Atomic Energy Agency
Publisher: IAEA
ISBN:
Category : Business & Economics
Languages : en
Pages : 704
Book Description
This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.
Publisher: IAEA
ISBN:
Category : Business & Economics
Languages : en
Pages : 704
Book Description
This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.
Calibration of Radiation Protection Monitoring Instruments
Author: International Atomic Energy Agency
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 172
Book Description
This Safety Report provides guidance on the establishment and operation of calibration facilities for radiation monitoring instruments. It reflects the current internationally accepted principles and recommended practices in calibration procedures, taking account of the major changes and developments that have occurred over the past decade.
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 172
Book Description
This Safety Report provides guidance on the establishment and operation of calibration facilities for radiation monitoring instruments. It reflects the current internationally accepted principles and recommended practices in calibration procedures, taking account of the major changes and developments that have occurred over the past decade.
Biological Dosimetry
Author: W. G. Eisert
Publisher: Springer Science & Business Media
ISBN: 3642693342
Category : Medical
Languages : en
Pages : 343
Book Description
In October 1982, a small international symposium was held at the Gesellschaft fUr Strahlen- und Umweltforschung mbH (GSF) in Munich as a satellite meeting of the IX International Conference on Analytical Cytology. The symposium focussed on cytometric approaches to biological dosimetry, and was, to the best of our knowledge, the first meeting on this subject ever held. There was strong encouragement from the 75 attendees and from others to publish a proceedings of the symposium. Hence this book, containing 30 of the 36 presentations, has been assembled. Dosimetry, the accurate and systematic determination of doses, usually refers to grams of substance administered or rads of ionization or some such measure of exposure of a patient, a victim or an experimental system. The term also can be used to describe the quantity of an ultimate, active agent as delivered to the appropriate target material within a biological system. Thus, for mutagens, one can speak of DNA dosimetry, meaning the number of adducts produced in the DNA of target cells such as bone-mar row stem cells or spermatogonia.
Publisher: Springer Science & Business Media
ISBN: 3642693342
Category : Medical
Languages : en
Pages : 343
Book Description
In October 1982, a small international symposium was held at the Gesellschaft fUr Strahlen- und Umweltforschung mbH (GSF) in Munich as a satellite meeting of the IX International Conference on Analytical Cytology. The symposium focussed on cytometric approaches to biological dosimetry, and was, to the best of our knowledge, the first meeting on this subject ever held. There was strong encouragement from the 75 attendees and from others to publish a proceedings of the symposium. Hence this book, containing 30 of the 36 presentations, has been assembled. Dosimetry, the accurate and systematic determination of doses, usually refers to grams of substance administered or rads of ionization or some such measure of exposure of a patient, a victim or an experimental system. The term also can be used to describe the quantity of an ultimate, active agent as delivered to the appropriate target material within a biological system. Thus, for mutagens, one can speak of DNA dosimetry, meaning the number of adducts produced in the DNA of target cells such as bone-mar row stem cells or spermatogonia.
An Introduction to Radiation Protection
Author: ALAN MARTIN and SAMUEL A. HARBISON
Publisher: Springer
ISBN: 1489969403
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
Publisher: Springer
ISBN: 1489969403
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
Radiation Safety Manual
Author: Veterans Administration Hospital (Omaha, Neb.). Special Laboratory of Nuclear Medicine and Biology
Publisher:
ISBN:
Category : Radiation
Languages : en
Pages : 60
Book Description
Publisher:
ISBN:
Category : Radiation
Languages : en
Pages : 60
Book Description
Radiation Detection
Author: Douglas McGregor
Publisher: CRC Press
ISBN: 1000038580
Category : Political Science
Languages : en
Pages : 1313
Book Description
Radiation Detection: Concepts, Methods, and Devices provides a modern overview of radiation detection devices and radiation measurement methods. The book topics have been selected on the basis of the authors’ many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment. This book is designed to give the reader more than a glimpse at radiation detection devices and a few packaged equations. Rather it seeks to provide an understanding that allows the reader to choose the appropriate detection technology for a particular application, to design detectors, and to competently perform radiation measurements. The authors describe assumptions used to derive frequently encountered equations used in radiation detection and measurement, thereby providing insight when and when not to apply the many approaches used in different aspects of radiation detection. Detailed in many of the chapters are specific aspects of radiation detectors, including comprehensive reviews of the historical development and current state of each topic. Such a review necessarily entails citations to many of the important discoveries, providing a resource to find quickly additional and more detailed information. This book generally has five main themes: Physics and Electrostatics needed to Design Radiation Detectors Properties and Design of Common Radiation Detectors Description and Modeling of the Different Types of Radiation Detectors Radiation Measurements and Subsequent Analysis Introductory Electronics Used for Radiation Detectors Topics covered include atomic and nuclear physics, radiation interactions, sources of radiation, and background radiation. Detector operation is addressed with chapters on radiation counting statistics, radiation source and detector effects, electrostatics for signal generation, solid-state and semiconductor physics, background radiations, and radiation counting and spectroscopy. Detectors for gamma-rays, charged-particles, and neutrons are detailed in chapters on gas-filled, scintillator, semiconductor, thermoluminescence and optically stimulated luminescence, photographic film, and a variety of other detection devices.
Publisher: CRC Press
ISBN: 1000038580
Category : Political Science
Languages : en
Pages : 1313
Book Description
Radiation Detection: Concepts, Methods, and Devices provides a modern overview of radiation detection devices and radiation measurement methods. The book topics have been selected on the basis of the authors’ many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment. This book is designed to give the reader more than a glimpse at radiation detection devices and a few packaged equations. Rather it seeks to provide an understanding that allows the reader to choose the appropriate detection technology for a particular application, to design detectors, and to competently perform radiation measurements. The authors describe assumptions used to derive frequently encountered equations used in radiation detection and measurement, thereby providing insight when and when not to apply the many approaches used in different aspects of radiation detection. Detailed in many of the chapters are specific aspects of radiation detectors, including comprehensive reviews of the historical development and current state of each topic. Such a review necessarily entails citations to many of the important discoveries, providing a resource to find quickly additional and more detailed information. This book generally has five main themes: Physics and Electrostatics needed to Design Radiation Detectors Properties and Design of Common Radiation Detectors Description and Modeling of the Different Types of Radiation Detectors Radiation Measurements and Subsequent Analysis Introductory Electronics Used for Radiation Detectors Topics covered include atomic and nuclear physics, radiation interactions, sources of radiation, and background radiation. Detector operation is addressed with chapters on radiation counting statistics, radiation source and detector effects, electrostatics for signal generation, solid-state and semiconductor physics, background radiations, and radiation counting and spectroscopy. Detectors for gamma-rays, charged-particles, and neutrons are detailed in chapters on gas-filled, scintillator, semiconductor, thermoluminescence and optically stimulated luminescence, photographic film, and a variety of other detection devices.