Author: Jacques Martinet
Publisher: Springer Science & Business Media
ISBN: 9783540442363
Category : Mathematics
Languages : en
Pages : 556
Book Description
Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.
Perfect Lattices in Euclidean Spaces
Author: Jacques Martinet
Publisher: Springer Science & Business Media
ISBN: 9783540442363
Category : Mathematics
Languages : en
Pages : 556
Book Description
Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.
Publisher: Springer Science & Business Media
ISBN: 9783540442363
Category : Mathematics
Languages : en
Pages : 556
Book Description
Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.
Perfect Lattices in Euclidean Spaces
Author: Jacques Martinet
Publisher: Springer Science & Business Media
ISBN: 3662051672
Category : Mathematics
Languages : en
Pages : 535
Book Description
Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.
Publisher: Springer Science & Business Media
ISBN: 3662051672
Category : Mathematics
Languages : en
Pages : 535
Book Description
Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.
Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms
Author: Wai Kiu Chan
Publisher: American Mathematical Soc.
ISBN: 0821883186
Category : Mathematics
Languages : en
Pages : 259
Book Description
This volume contains the proceedings of the International Workshop on Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms. The articles cover the arithmetic theory of quadratic forms and lattices, as well as the effective Diophantine analysis with height functions.
Publisher: American Mathematical Soc.
ISBN: 0821883186
Category : Mathematics
Languages : en
Pages : 259
Book Description
This volume contains the proceedings of the International Workshop on Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms. The articles cover the arithmetic theory of quadratic forms and lattices, as well as the effective Diophantine analysis with height functions.
Discrete Geometry and Topology
Author: Boris Nikolaevich Delone
Publisher: American Mathematical Soc.
ISBN: 9780821831472
Category : Mathematics
Languages : en
Pages : 220
Book Description
This collection of papers honors the 100th anniversary of the birth of Boris Nikolaevich Delone, whose mathematical interests centered on the geometry of positive quadratic forms. After an initial paper presenting an account of Delone's life, including his scientific work, the book centers on discrete geometry and combinatorics. The book presents new methods that permit a description of the structure of some $L$-bodies and $L$-partitionings and that, in many cases, provide a definitive description. Also studied are combinatorial-topological problems arising in the statistical Ising model, the disposition of finite point sets in convex bodies of high dimension under certain conditions, and investigations of regular partitionings of spaces of constant curvature.
Publisher: American Mathematical Soc.
ISBN: 9780821831472
Category : Mathematics
Languages : en
Pages : 220
Book Description
This collection of papers honors the 100th anniversary of the birth of Boris Nikolaevich Delone, whose mathematical interests centered on the geometry of positive quadratic forms. After an initial paper presenting an account of Delone's life, including his scientific work, the book centers on discrete geometry and combinatorics. The book presents new methods that permit a description of the structure of some $L$-bodies and $L$-partitionings and that, in many cases, provide a definitive description. Also studied are combinatorial-topological problems arising in the statistical Ising model, the disposition of finite point sets in convex bodies of high dimension under certain conditions, and investigations of regular partitionings of spaces of constant curvature.
Markov Processes, Brownian Motion, and Time Symmetry
Author: Kai Lai Chung
Publisher: Springer Science & Business Media
ISBN: 0387286969
Category : Mathematics
Languages : en
Pages : 444
Book Description
From the reviews of the First Edition: "This excellent book is based on several sets of lecture notes written over a decade and has its origin in a one-semester course given by the author at the ETH, Zürich, in the spring of 1970. The author's aim was to present some of the best features of Markov processes and, in particular, of Brownian motion with a minimum of prerequisites and technicalities. The reader who becomes acquainted with the volume cannot but agree with the reviewer that the author was very successful in accomplishing this goal...The volume is very useful for people who wish to learn Markov processes but it seems to the reviewer that it is also of great interest to specialists in this area who could derive much stimulus from it. One can be convinced that it will receive wide circulation." (Mathematical Reviews) This new edition contains 9 new chapters which include new exercises, references, and multiple corrections throughout the original text.
Publisher: Springer Science & Business Media
ISBN: 0387286969
Category : Mathematics
Languages : en
Pages : 444
Book Description
From the reviews of the First Edition: "This excellent book is based on several sets of lecture notes written over a decade and has its origin in a one-semester course given by the author at the ETH, Zürich, in the spring of 1970. The author's aim was to present some of the best features of Markov processes and, in particular, of Brownian motion with a minimum of prerequisites and technicalities. The reader who becomes acquainted with the volume cannot but agree with the reviewer that the author was very successful in accomplishing this goal...The volume is very useful for people who wish to learn Markov processes but it seems to the reviewer that it is also of great interest to specialists in this area who could derive much stimulus from it. One can be convinced that it will receive wide circulation." (Mathematical Reviews) This new edition contains 9 new chapters which include new exercises, references, and multiple corrections throughout the original text.
Women in Numbers Europe
Author: Marie José Bertin
Publisher: Springer
ISBN: 331917987X
Category : Mathematics
Languages : en
Pages : 215
Book Description
Covering topics in graph theory, L-functions, p-adic geometry, Galois representations, elliptic fibrations, genus 3 curves and bad reduction, harmonic analysis, symplectic groups and mould combinatorics, this volume presents a collection of papers covering a wide swath of number theory emerging from the third iteration of the international Women in Numbers conference, “Women in Numbers - Europe” (WINE), held on October 14–18, 2013 at the CIRM-Luminy mathematical conference center in France. While containing contributions covering a wide range of cutting-edge topics in number theory, the volume emphasizes those concrete approaches that make it possible for graduate students and postdocs to begin work immediately on research problems even in highly complex subjects.
Publisher: Springer
ISBN: 331917987X
Category : Mathematics
Languages : en
Pages : 215
Book Description
Covering topics in graph theory, L-functions, p-adic geometry, Galois representations, elliptic fibrations, genus 3 curves and bad reduction, harmonic analysis, symplectic groups and mould combinatorics, this volume presents a collection of papers covering a wide swath of number theory emerging from the third iteration of the international Women in Numbers conference, “Women in Numbers - Europe” (WINE), held on October 14–18, 2013 at the CIRM-Luminy mathematical conference center in France. While containing contributions covering a wide range of cutting-edge topics in number theory, the volume emphasizes those concrete approaches that make it possible for graduate students and postdocs to begin work immediately on research problems even in highly complex subjects.
Circuits and Systems for Security and Privacy
Author: Farhana Sheikh
Publisher: CRC Press
ISBN: 1482236893
Category : Computers
Languages : en
Pages : 407
Book Description
Circuits and Systems for Security and Privacy begins by introducing the basic theoretical concepts and arithmetic used in algorithms for security and cryptography, and by reviewing the fundamental building blocks of cryptographic systems. It then analyzes the advantages and disadvantages of real-world implementations that not only optimize power, area, and throughput but also resist side-channel attacks. Merging the perspectives of experts from industry and academia, the book provides valuable insight and necessary background for the design of security-aware circuits and systems as well as efficient accelerators used in security applications.
Publisher: CRC Press
ISBN: 1482236893
Category : Computers
Languages : en
Pages : 407
Book Description
Circuits and Systems for Security and Privacy begins by introducing the basic theoretical concepts and arithmetic used in algorithms for security and cryptography, and by reviewing the fundamental building blocks of cryptographic systems. It then analyzes the advantages and disadvantages of real-world implementations that not only optimize power, area, and throughput but also resist side-channel attacks. Merging the perspectives of experts from industry and academia, the book provides valuable insight and necessary background for the design of security-aware circuits and systems as well as efficient accelerators used in security applications.
Lecture Notes on Geometry of Numbers
Author: R. J. Hans-Gill
Publisher: Springer Nature
ISBN: 9819996023
Category :
Languages : en
Pages : 212
Book Description
Publisher: Springer Nature
ISBN: 9819996023
Category :
Languages : en
Pages : 212
Book Description
Infinite Groups: Geometric, Combinatorial and Dynamical Aspects
Author: Laurent Bartholdi
Publisher: Springer Science & Business Media
ISBN: 3764374470
Category : Mathematics
Languages : en
Pages : 419
Book Description
This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
Publisher: Springer Science & Business Media
ISBN: 3764374470
Category : Mathematics
Languages : en
Pages : 419
Book Description
This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
Basic Quadratic Forms
Author: Larry J. Gerstein
Publisher: American Mathematical Soc.
ISBN: 0821844652
Category : Mathematics
Languages : en
Pages : 274
Book Description
The arithmetic theory of quadratic forms is a rich branch of number theory that has had important applications to several areas of pure mathematics--particularly group theory and topology--as well as to cryptography and coding theory. This book is a self-contained introduction to quadratic forms that is based on graduate courses the author has taught many times. It leads the reader from foundation material up to topics of current research interest--with special attention to the theory over the integers and over polynomial rings in one variable over a field--and requires only a basic background in linear and abstract algebra as a prerequisite. Whenever possible, concrete constructions are chosen over more abstract arguments. The book includes many exercises and explicit examples, and it is appropriate as a textbook for graduate courses or for independent study. To facilitate further study, a guide to the extensive literature on quadratic forms is provided.
Publisher: American Mathematical Soc.
ISBN: 0821844652
Category : Mathematics
Languages : en
Pages : 274
Book Description
The arithmetic theory of quadratic forms is a rich branch of number theory that has had important applications to several areas of pure mathematics--particularly group theory and topology--as well as to cryptography and coding theory. This book is a self-contained introduction to quadratic forms that is based on graduate courses the author has taught many times. It leads the reader from foundation material up to topics of current research interest--with special attention to the theory over the integers and over polynomial rings in one variable over a field--and requires only a basic background in linear and abstract algebra as a prerequisite. Whenever possible, concrete constructions are chosen over more abstract arguments. The book includes many exercises and explicit examples, and it is appropriate as a textbook for graduate courses or for independent study. To facilitate further study, a guide to the extensive literature on quadratic forms is provided.