Author: Albert S. Schwarz
Publisher: Springer Science & Business Media
ISBN: 366202943X
Category : Mathematics
Languages : en
Pages : 277
Book Description
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.
Quantum Field Theory and Topology
Author: Albert S. Schwarz
Publisher: Springer Science & Business Media
ISBN: 366202943X
Category : Mathematics
Languages : en
Pages : 277
Book Description
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.
Publisher: Springer Science & Business Media
ISBN: 366202943X
Category : Mathematics
Languages : en
Pages : 277
Book Description
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.
Lectures on Field Theory and Topology
Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202
Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202
Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Geometry, Topology and Quantum Field Theory
Author: P. Bandyopadhyay
Publisher: Springer Science & Business Media
ISBN: 9401716978
Category : Science
Languages : en
Pages : 225
Book Description
This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap.
Publisher: Springer Science & Business Media
ISBN: 9401716978
Category : Science
Languages : en
Pages : 225
Book Description
This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap.
Particles, Fields And Topology: Celebrating A. P. Balachandran
Author: T R Govindarajan
Publisher: World Scientific
ISBN: 9811270449
Category : Science
Languages : en
Pages : 340
Book Description
A P Balachandran has a long and impressive record of research in particle physics and quantum field theory, bringing concepts of geometry, topology and operator algebras to the analysis of physical problems, particularly in particle physics and condensed matter physics. He has also had an influential role within the physics community, not only in terms of a large number of students, research associates and collaborators, but also serving on the editorial boards of important publications, including the International Journal of Modern Physics A.This book consists of articles by students and associates of Balachandran. Most of the articles are scientific in nature, with topics ranging from noncommutative geometry, particle physics phenomenology, to condensed matter physics. Various chapters focus on new perspectives and directions resulting from Balachandran's contributions to physics, as well as some reminiscences of collaborating and working with Balachandran.
Publisher: World Scientific
ISBN: 9811270449
Category : Science
Languages : en
Pages : 340
Book Description
A P Balachandran has a long and impressive record of research in particle physics and quantum field theory, bringing concepts of geometry, topology and operator algebras to the analysis of physical problems, particularly in particle physics and condensed matter physics. He has also had an influential role within the physics community, not only in terms of a large number of students, research associates and collaborators, but also serving on the editorial boards of important publications, including the International Journal of Modern Physics A.This book consists of articles by students and associates of Balachandran. Most of the articles are scientific in nature, with topics ranging from noncommutative geometry, particle physics phenomenology, to condensed matter physics. Various chapters focus on new perspectives and directions resulting from Balachandran's contributions to physics, as well as some reminiscences of collaborating and working with Balachandran.
Quantum Field Theory Of Point Particles And Strings
Author: Brian Hatfield
Publisher: CRC Press
ISBN: 0429972865
Category : Science
Languages : en
Pages : 474
Book Description
First Published in 2018. The emphasis of the book is calculational, and most computations are presented in step-by-step detail. The book is unique in that it develops all three representations of quantum field theory (operator, functional Schr dinger, and path integral) for point particles and strings. In many cases, identical results are worked out in each representation to emphasize the representation-independent structures of quantum field theory
Publisher: CRC Press
ISBN: 0429972865
Category : Science
Languages : en
Pages : 474
Book Description
First Published in 2018. The emphasis of the book is calculational, and most computations are presented in step-by-step detail. The book is unique in that it develops all three representations of quantum field theory (operator, functional Schr dinger, and path integral) for point particles and strings. In many cases, identical results are worked out in each representation to emphasize the representation-independent structures of quantum field theory
Condensed Matter Field Theory
Author: Alexander Altland
Publisher: Cambridge University Press
ISBN: 0521769752
Category : Science
Languages : en
Pages : 785
Book Description
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Publisher: Cambridge University Press
ISBN: 0521769752
Category : Science
Languages : en
Pages : 785
Book Description
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Field Theory, Topology and Condensed Matter Physics
Author: Hendrik B. Geyer
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 232
Book Description
This topical volume contains five pedagogically written articles on the interplay between field theory and condensed matter physics. The main emphasis is on the topological aspects, and especially quantum Hall fluids, and superconductivity is treated extensively. Other topics are conformal invariance and path integrals. The articles are carefully edited so that the book could ideally serve as a text for special graduate courses.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 232
Book Description
This topical volume contains five pedagogically written articles on the interplay between field theory and condensed matter physics. The main emphasis is on the topological aspects, and especially quantum Hall fluids, and superconductivity is treated extensively. Other topics are conformal invariance and path integrals. The articles are carefully edited so that the book could ideally serve as a text for special graduate courses.
Magnetospheric Particles and Fields
Author: Billy McCormac
Publisher: Springer Science & Business Media
ISBN: 9401015031
Category : Science
Languages : en
Pages : 329
Book Description
Proceedings of the Summer Advanced Study Institute held at Graz, Austria, August 4-15, 1975
Publisher: Springer Science & Business Media
ISBN: 9401015031
Category : Science
Languages : en
Pages : 329
Book Description
Proceedings of the Summer Advanced Study Institute held at Graz, Austria, August 4-15, 1975
Topology and Geometry for Physicists
Author: Charles Nash
Publisher: Courier Corporation
ISBN: 0486318362
Category : Mathematics
Languages : en
Pages : 302
Book Description
Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.
Publisher: Courier Corporation
ISBN: 0486318362
Category : Mathematics
Languages : en
Pages : 302
Book Description
Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.
Topology in Condensed Matter
Author: Michael I. Monastyrsky
Publisher: Springer Science & Business Media
ISBN: 3540312641
Category : Science
Languages : en
Pages : 263
Book Description
This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.
Publisher: Springer Science & Business Media
ISBN: 3540312641
Category : Science
Languages : en
Pages : 263
Book Description
This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.