Author: Samuel J. Ling
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818
Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
University Physics
Author: Samuel J. Ling
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818
Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818
Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Fundamentals of Plasma Physics
Author: J. A. Bittencourt
Publisher: Springer Science & Business Media
ISBN: 1475740301
Category : Science
Languages : en
Pages : 700
Book Description
Fundamentals of Plasma Physics is a general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory, with applications to a variety of important plasma phenomena. Its clarity and completeness makes the text suitable for self-learning and for self-paced courses. Throughout the text the emphasis is on clarity, rather than formality, the various derivations are explained in detail and, wherever possible, the physical interpretations are emphasized. The mathematical treatment is set out in great detail, carrying out the steps which are usually left to the reader. The problems form an integral part of the text and most of them were designed in such a way as to provide a guideline, stating intermediate steps with answers.
Publisher: Springer Science & Business Media
ISBN: 1475740301
Category : Science
Languages : en
Pages : 700
Book Description
Fundamentals of Plasma Physics is a general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory, with applications to a variety of important plasma phenomena. Its clarity and completeness makes the text suitable for self-learning and for self-paced courses. Throughout the text the emphasis is on clarity, rather than formality, the various derivations are explained in detail and, wherever possible, the physical interpretations are emphasized. The mathematical treatment is set out in great detail, carrying out the steps which are usually left to the reader. The problems form an integral part of the text and most of them were designed in such a way as to provide a guideline, stating intermediate steps with answers.
Fundamentals Of Theoretical Plasma Physics: Mathematical Description Of Plasma Waves
Author: Hee J Lee
Publisher: World Scientific
ISBN: 9813276770
Category : Science
Languages : en
Pages : 726
Book Description
This book is written as a senior undergraduate and graduate textbook of theoretical plasma physics; topics include Boltzmann equation, two-fluid equations, magnetohydrodynamics, Vlasov-Maxwell Plasma, absolute and convective instabilities, fundamental kinetic theory, Lenard-Balescu equation, electric fluctuation, plasma electrodynamics and causality, nonlinear waves, inverse scattering method, surface waves, and dusty plasma. It also includes special topics like parametric instabilities and kinetic theory of surface waves in a plasma slab.The development of theory is presented through gentle mathematical steps through easy and straightforward demonstration. The readers will be able to appreciate the beauty of mathematical analysis in connection with theoretical plasma physics.
Publisher: World Scientific
ISBN: 9813276770
Category : Science
Languages : en
Pages : 726
Book Description
This book is written as a senior undergraduate and graduate textbook of theoretical plasma physics; topics include Boltzmann equation, two-fluid equations, magnetohydrodynamics, Vlasov-Maxwell Plasma, absolute and convective instabilities, fundamental kinetic theory, Lenard-Balescu equation, electric fluctuation, plasma electrodynamics and causality, nonlinear waves, inverse scattering method, surface waves, and dusty plasma. It also includes special topics like parametric instabilities and kinetic theory of surface waves in a plasma slab.The development of theory is presented through gentle mathematical steps through easy and straightforward demonstration. The readers will be able to appreciate the beauty of mathematical analysis in connection with theoretical plasma physics.
Particle Accelerator Physics I
Author: Helmut Wiedemann
Publisher: Springer Science & Business Media
ISBN: 3662038277
Category : Science
Languages : en
Pages : 465
Book Description
In this second edition of Particle Accelerator Physics, Vol. 1, is mainly a reprint of the first edition without significant changes in content. The bibliography has been updated to include more recent progress in the field of particle accelerators. With the help of many observant readers a number of misprints and errors could be eliminated. The author would like to express his sincere appreciation to all those who have pointed out such shortcomings and wel comes such information and any other relevant information in the future. The author would also like to express his special thanks to the editor Dr. Helmut Lotsch and his staff for editorial as well as technical advice and support which contributed greatly to the broad acceptance of this text and made a second edition of both volumes necessary. Palo Alto, California Helmut Wiedemann November 1998 VII Preface to the First Edition The purpose of this textbook is to provide a comprehensive introduction into the physics of particle accelerators and particle beam dynamics. Parti cle accelerators have become important research tools in high energy physics as well as sources of incoherent and coherent radiation from the far infra red to hard x-rays for basic and applied research. During years of teaching accelerator physics it became clear that the single most annoying obstacle to get introduced into the field is the absence of a suitable textbook.
Publisher: Springer Science & Business Media
ISBN: 3662038277
Category : Science
Languages : en
Pages : 465
Book Description
In this second edition of Particle Accelerator Physics, Vol. 1, is mainly a reprint of the first edition without significant changes in content. The bibliography has been updated to include more recent progress in the field of particle accelerators. With the help of many observant readers a number of misprints and errors could be eliminated. The author would like to express his sincere appreciation to all those who have pointed out such shortcomings and wel comes such information and any other relevant information in the future. The author would also like to express his special thanks to the editor Dr. Helmut Lotsch and his staff for editorial as well as technical advice and support which contributed greatly to the broad acceptance of this text and made a second edition of both volumes necessary. Palo Alto, California Helmut Wiedemann November 1998 VII Preface to the First Edition The purpose of this textbook is to provide a comprehensive introduction into the physics of particle accelerators and particle beam dynamics. Parti cle accelerators have become important research tools in high energy physics as well as sources of incoherent and coherent radiation from the far infra red to hard x-rays for basic and applied research. During years of teaching accelerator physics it became clear that the single most annoying obstacle to get introduced into the field is the absence of a suitable textbook.
Electron and Ion Optics
Author: Miklos Szilagyi
Publisher: Springer Science & Business Media
ISBN: 1461309239
Category : Technology & Engineering
Languages : en
Pages : 550
Book Description
The field of electron and ion optics is based on the analogy between geometrical light optics and the motion of charged particles in electromagnetic fields. The spectacular development of the electron microscope clearly shows the possibilities of image formation by charged particles of wavelength much shorter than that of visible light. As new applications such as particle accelerators, cathode ray tubes, mass and energy spectrometers, microwave tubes, scanning-type analytical instruments, heavy beam technologies, etc. emerged, the scope of particle beam optics has been exten ded to the formation of fine probes. The goal is to concentrate as many particles as possible in as small a volume as possible. Fabrication of microcircuits is a good example of the growing importance of this field. The current trend is towards increased circuit complexity and pattern density. Because of the diffraction limitation of processes using optical photons and the technological difficulties connected with x-ray processes, charged particle beams are becoming popular. With them it is possible to write directly on a wafer under computer control, without using a mask. Focused ion beams offer especially great possibilities in the submicron region. Therefore, electron and ion beam technologies will most probably playa very important role in the next twenty years or so.
Publisher: Springer Science & Business Media
ISBN: 1461309239
Category : Technology & Engineering
Languages : en
Pages : 550
Book Description
The field of electron and ion optics is based on the analogy between geometrical light optics and the motion of charged particles in electromagnetic fields. The spectacular development of the electron microscope clearly shows the possibilities of image formation by charged particles of wavelength much shorter than that of visible light. As new applications such as particle accelerators, cathode ray tubes, mass and energy spectrometers, microwave tubes, scanning-type analytical instruments, heavy beam technologies, etc. emerged, the scope of particle beam optics has been exten ded to the formation of fine probes. The goal is to concentrate as many particles as possible in as small a volume as possible. Fabrication of microcircuits is a good example of the growing importance of this field. The current trend is towards increased circuit complexity and pattern density. Because of the diffraction limitation of processes using optical photons and the technological difficulties connected with x-ray processes, charged particle beams are becoming popular. With them it is possible to write directly on a wafer under computer control, without using a mask. Focused ion beams offer especially great possibilities in the submicron region. Therefore, electron and ion beam technologies will most probably playa very important role in the next twenty years or so.
The Adiabatic Motion of Charged Particles
Author: Theodore G. Northrop
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 136
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 136
Book Description
Plasma: The Fourth State of Matter
Author: D. Frank-Kamenetskii
Publisher: Springer Science & Business Media
ISBN: 1468418963
Category : Science
Languages : en
Pages : 167
Book Description
The idea for this book originated with the late Igor Vasil 'evich Kurchatov. He suggested to the author the need for a comprehen sive presentation of the fundamental ideas of plasma physics with out c'omplicated mathematics. This task has not been an easy one. In order to clarify the physical nature of plasma phenomena with out recourse to intricate mathematical expressions it is neces sary to think problems through very carefully. Thus, the book did not come into being by inspiration, but required a considerable ef fort. The aim of the book is to provide a beginning reader with an elementary knowledge of plasma physics. The book is primar ily written for engineers and technicians; however, we have also tried to make it intelligible to the reader whose knowledge ofphys ics is at the advanced-freshman level. To understand the book it is also necessary to have a working knowledge of electricity and magnetism of the kind available in present-:day programs in junior colleges. This book is not intended for light reading. It is designed for the reader for whom plasma physics will be a continuing in terest. We have confidence that such a reader will want to broad en his knowledge by consulting more specialized literature. Thus, we not only include simple expressions but also special important terms.
Publisher: Springer Science & Business Media
ISBN: 1468418963
Category : Science
Languages : en
Pages : 167
Book Description
The idea for this book originated with the late Igor Vasil 'evich Kurchatov. He suggested to the author the need for a comprehen sive presentation of the fundamental ideas of plasma physics with out c'omplicated mathematics. This task has not been an easy one. In order to clarify the physical nature of plasma phenomena with out recourse to intricate mathematical expressions it is neces sary to think problems through very carefully. Thus, the book did not come into being by inspiration, but required a considerable ef fort. The aim of the book is to provide a beginning reader with an elementary knowledge of plasma physics. The book is primar ily written for engineers and technicians; however, we have also tried to make it intelligible to the reader whose knowledge ofphys ics is at the advanced-freshman level. To understand the book it is also necessary to have a working knowledge of electricity and magnetism of the kind available in present-:day programs in junior colleges. This book is not intended for light reading. It is designed for the reader for whom plasma physics will be a continuing in terest. We have confidence that such a reader will want to broad en his knowledge by consulting more specialized literature. Thus, we not only include simple expressions but also special important terms.
University Physics
Author: Samuel J. Ling
Publisher:
ISBN: 9781938168277
Category : Mechanics
Languages : en
Pages : 1018
Book Description
"University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result."--Open Textbook Library.
Publisher:
ISBN: 9781938168277
Category : Mechanics
Languages : en
Pages : 1018
Book Description
"University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result."--Open Textbook Library.
Low Frequency Waves and Turbulence in Magnetized Laboratory Plasmas and in the Ionosphere
Author: Hans Pécseli
Publisher:
ISBN: 9780750312530
Category : SCIENCE
Languages : en
Pages : 0
Book Description
"Low Frequency Waves and Turbulence in Magnetized Laboratory Plasmas and in the Ionosphere was developed from courses taught by the author at the universities of Oslo and Tromso in Norway. Suitable for undergraduates, graduate students and researchers, the first part of the book is devoted to discussing some relevant plasma instabilities and the free energy that drives them. In the second part, the more advanced topics of nonlinear models and the interactions of many modes are discussed. Theoretical tools available for turbulence modelling are also outlined. The book summarizes a number of studies of low-frequency plasma waves, drift waves in particular, from laboratory and space experiments."--Prové de l'editor.
Publisher:
ISBN: 9780750312530
Category : SCIENCE
Languages : en
Pages : 0
Book Description
"Low Frequency Waves and Turbulence in Magnetized Laboratory Plasmas and in the Ionosphere was developed from courses taught by the author at the universities of Oslo and Tromso in Norway. Suitable for undergraduates, graduate students and researchers, the first part of the book is devoted to discussing some relevant plasma instabilities and the free energy that drives them. In the second part, the more advanced topics of nonlinear models and the interactions of many modes are discussed. Theoretical tools available for turbulence modelling are also outlined. The book summarizes a number of studies of low-frequency plasma waves, drift waves in particular, from laboratory and space experiments."--Prové de l'editor.
Mass and Motion in General Relativity
Author: Luc Blanchet
Publisher: Springer Science & Business Media
ISBN: 9048130158
Category : Science
Languages : en
Pages : 634
Book Description
From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.
Publisher: Springer Science & Business Media
ISBN: 9048130158
Category : Science
Languages : en
Pages : 634
Book Description
From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.