Particle Filters for Random Set Models

Particle Filters for Random Set Models PDF Author: Branko Ristic
Publisher: Springer Science & Business Media
ISBN: 1461463165
Category : Technology & Engineering
Languages : en
Pages : 184

Get Book Here

Book Description
This book discusses state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. Although the resulting algorithms, known as particle filters, have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation.

Particle Filters for Random Set Models

Particle Filters for Random Set Models PDF Author: Branko Ristic
Publisher: Springer Science & Business Media
ISBN: 1461463165
Category : Technology & Engineering
Languages : en
Pages : 184

Get Book Here

Book Description
This book discusses state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. Although the resulting algorithms, known as particle filters, have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation.

Random Finite Sets for Robot Mapping & SLAM

Random Finite Sets for Robot Mapping & SLAM PDF Author: John Stephen Mullane
Publisher: Springer Science & Business Media
ISBN: 3642213898
Category : Technology & Engineering
Languages : en
Pages : 161

Get Book Here

Book Description
The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.

An Introduction to Sequential Monte Carlo

An Introduction to Sequential Monte Carlo PDF Author: Nicolas Chopin
Publisher: Springer Nature
ISBN: 3030478459
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Nonlinear Data Assimilation

Nonlinear Data Assimilation PDF Author: Peter Jan Van Leeuwen
Publisher: Springer
ISBN: 3319183478
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

Feynman-Kac Formulae

Feynman-Kac Formulae PDF Author: Pierre Del Moral
Publisher: Springer Science & Business Media
ISBN: 9780387202686
Category : Mathematics
Languages : en
Pages : 584

Get Book Here

Book Description
This text takes readers in a clear and progressive format from simple to recent and advanced topics in pure and applied probability such as contraction and annealed properties of non-linear semi-groups, functional entropy inequalities, empirical process convergence, increasing propagations of chaos, central limit, and Berry Esseen type theorems as well as large deviation principles for strong topologies on path-distribution spaces. Topics also include a body of powerful branching and interacting particle methods.

Bayesian Filtering and Smoothing

Bayesian Filtering and Smoothing PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255

Get Book Here

Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Sequential Monte Carlo Methods in Practice

Sequential Monte Carlo Methods in Practice PDF Author: Arnaud Doucet
Publisher: Springer Science & Business Media
ISBN: 1475734379
Category : Mathematics
Languages : en
Pages : 590

Get Book Here

Book Description
Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Optimal Filtering

Optimal Filtering PDF Author: Brian D. O. Anderson
Publisher: Courier Corporation
ISBN: 0486136892
Category : Science
Languages : en
Pages : 370

Get Book Here

Book Description
Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.

Mean Field Simulation for Monte Carlo Integration

Mean Field Simulation for Monte Carlo Integration PDF Author: Pierre Del Moral
Publisher: CRC Press
ISBN: 1466504056
Category : Mathematics
Languages : en
Pages : 628

Get Book Here

Book Description
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Markov chain Monte Carlo models; bootstrapping methods; ensemble Kalman filters; and interacting particle filters. Mean Field Simulation for Monte Carlo Integration presents the first comprehensive and modern mathematical treatment of mean field particle simulation models and interdisciplinary research topics, including interacting jumps and McKean-Vlasov processes, sequential Monte Carlo methodologies, genetic particle algorithms, genealogical tree-based algorithms, and quantum and diffusion Monte Carlo methods. Along with covering refined convergence analysis on nonlinear Markov chain models, the author discusses applications related to parameter estimation in hidden Markov chain models, stochastic optimization, nonlinear filtering and multiple target tracking, stochastic optimization, calibration and uncertainty propagations in numerical codes, rare event simulation, financial mathematics, and free energy and quasi-invariant measures arising in computational physics and population biology. This book shows how mean field particle simulation has revolutionized the field of Monte Carlo integration and stochastic algorithms. It will help theoretical probability researchers, applied statisticians, biologists, statistical physicists, and computer scientists work better across their own disciplinary boundaries.

Beyond the Kalman Filter: Particle Filters for Tracking Applications

Beyond the Kalman Filter: Particle Filters for Tracking Applications PDF Author: Branko Ristic
Publisher: Artech House
ISBN: 9781580538510
Category : Technology & Engineering
Languages : en
Pages : 328

Get Book Here

Book Description
For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.