Author: Carlos Galindo
Publisher: American Mathematical Society
ISBN: 1470467798
Category : Mathematics
Languages : en
Pages : 311
Book Description
This volume contains the proceedings of the 2019 Lluís A. Santaló Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24–28, 2019, at the Universidad Internacional Menéndez Pelayo, Santander, Spain. The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications. This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of Archimedean, $p$-adic, and motivic zeta functions, singularities of plane curves and their Poincaré series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists. This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics.
$p$-Adic Analysis, Arithmetic and Singularities
Author: Carlos Galindo
Publisher: American Mathematical Society
ISBN: 1470467798
Category : Mathematics
Languages : en
Pages : 311
Book Description
This volume contains the proceedings of the 2019 Lluís A. Santaló Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24–28, 2019, at the Universidad Internacional Menéndez Pelayo, Santander, Spain. The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications. This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of Archimedean, $p$-adic, and motivic zeta functions, singularities of plane curves and their Poincaré series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists. This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics.
Publisher: American Mathematical Society
ISBN: 1470467798
Category : Mathematics
Languages : en
Pages : 311
Book Description
This volume contains the proceedings of the 2019 Lluís A. Santaló Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24–28, 2019, at the Universidad Internacional Menéndez Pelayo, Santander, Spain. The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications. This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of Archimedean, $p$-adic, and motivic zeta functions, singularities of plane curves and their Poincaré series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists. This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics.
P-adic Analysis, Arithmetic and Singularities
Author: Carlos Galindo
Publisher:
ISBN: 9781470469764
Category : p-adic analysis
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781470469764
Category : p-adic analysis
Languages : en
Pages :
Book Description
p-Adic Analysis
Author: W. A. Zúñiga-Galindo
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111578682
Category : Mathematics
Languages : en
Pages : 162
Book Description
This book is intended to provide a fast, interdisciplinary introduction to the basic results of p-adic analysis and its connections with mathematical physics and applications. The book revolves around three topics: (1) p-adic heat equations and ultradiffusion; (2) fundamental solutions and local zeta functions, Riesz kernels, and quadratic forms; (3) Sobolev-type spaces and pseudo-differential evolution equations. These topics are deeply connected with very relevant current research areas. The book includes numerous examples, exercises, and snapshots of several mathematical theories. This book arose from the need to quickly introduce mathematical audience the basic concepts and techniques to do research in p-adic analysis and its connections with mathematical physics and other areas. The book is addressed to a general mathematical audience, which includes computer scientists, theoretical physicists, and people interested in mathematical analysis, PDEs, etc.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111578682
Category : Mathematics
Languages : en
Pages : 162
Book Description
This book is intended to provide a fast, interdisciplinary introduction to the basic results of p-adic analysis and its connections with mathematical physics and applications. The book revolves around three topics: (1) p-adic heat equations and ultradiffusion; (2) fundamental solutions and local zeta functions, Riesz kernels, and quadratic forms; (3) Sobolev-type spaces and pseudo-differential evolution equations. These topics are deeply connected with very relevant current research areas. The book includes numerous examples, exercises, and snapshots of several mathematical theories. This book arose from the need to quickly introduce mathematical audience the basic concepts and techniques to do research in p-adic analysis and its connections with mathematical physics and other areas. The book is addressed to a general mathematical audience, which includes computer scientists, theoretical physicists, and people interested in mathematical analysis, PDEs, etc.
Berkeley Lectures on P-adic Geometry
Author: Peter Scholze
Publisher: Princeton University Press
ISBN: 0691202095
Category : Mathematics
Languages : en
Pages : 260
Book Description
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.
Publisher: Princeton University Press
ISBN: 0691202095
Category : Mathematics
Languages : en
Pages : 260
Book Description
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.
Hypergeometry, Integrability and Lie Theory
Author: Erik Koelink
Publisher: American Mathematical Soc.
ISBN: 1470465205
Category : Education
Languages : en
Pages : 362
Book Description
This volume contains the proceedings of the virtual conference on Hypergeometry, Integrability and Lie Theory, held from December 7–11, 2020, which was dedicated to the 50th birthday of Jasper Stokman. The papers represent recent developments in the areas of representation theory, quantum integrable systems and special functions of hypergeometric type.
Publisher: American Mathematical Soc.
ISBN: 1470465205
Category : Education
Languages : en
Pages : 362
Book Description
This volume contains the proceedings of the virtual conference on Hypergeometry, Integrability and Lie Theory, held from December 7–11, 2020, which was dedicated to the 50th birthday of Jasper Stokman. The papers represent recent developments in the areas of representation theory, quantum integrable systems and special functions of hypergeometric type.
Compactifications, Configurations, and Cohomology
Author: Peter Crooks
Publisher: American Mathematical Society
ISBN: 1470469928
Category : Mathematics
Languages : en
Pages : 168
Book Description
This volume contains the proceedings of the Conference on Compactifications, Configurations, and Cohomology, held from October 22–24, 2021, at Northeastern University, Boston, MA. Some of the most active and fruitful mathematical research occurs at the interface of algebraic geometry, representation theory, and topology. Noteworthy examples include the study of compactifications in three specific settings—algebraic group actions, configuration spaces, and hyperplane arrangements. These three types of compactifications enjoy common structural features, including relations to root systems, combinatorial descriptions of cohomology rings, the appearance of iterated blow-ups, the geometry of normal crossing divisors, and connections to mirror symmetry in physics. On the other hand, these compactifications are often studied independently of one another. The articles focus on new and existing connections between the aforementioned three types of compactifications, thereby setting the stage for further research. It draws on the discipline-specific expertise of all contributors, and at the same time gives a unified, self-contained reference for compactifications and related constructions in different contexts.
Publisher: American Mathematical Society
ISBN: 1470469928
Category : Mathematics
Languages : en
Pages : 168
Book Description
This volume contains the proceedings of the Conference on Compactifications, Configurations, and Cohomology, held from October 22–24, 2021, at Northeastern University, Boston, MA. Some of the most active and fruitful mathematical research occurs at the interface of algebraic geometry, representation theory, and topology. Noteworthy examples include the study of compactifications in three specific settings—algebraic group actions, configuration spaces, and hyperplane arrangements. These three types of compactifications enjoy common structural features, including relations to root systems, combinatorial descriptions of cohomology rings, the appearance of iterated blow-ups, the geometry of normal crossing divisors, and connections to mirror symmetry in physics. On the other hand, these compactifications are often studied independently of one another. The articles focus on new and existing connections between the aforementioned three types of compactifications, thereby setting the stage for further research. It draws on the discipline-specific expertise of all contributors, and at the same time gives a unified, self-contained reference for compactifications and related constructions in different contexts.
A Course in p-adic Analysis
Author: Alain M. Robert
Publisher: Springer Science & Business Media
ISBN: 1475732546
Category : Mathematics
Languages : en
Pages : 451
Book Description
Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.
Publisher: Springer Science & Business Media
ISBN: 1475732546
Category : Mathematics
Languages : en
Pages : 451
Book Description
Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.
The Diverse World of PDEs
Author: I. S. Krasil′shchik
Publisher: American Mathematical Society
ISBN: 1470473550
Category : Mathematics
Languages : en
Pages : 236
Book Description
This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at Independent University of Moscow and Moscow State University, Moscow, Russia. The papers reflect the modern interplay between partial differential equations and various aspects of algebra and computer science. The topics discussed are: relations between integrability and differential rings, supermanifolds, differential calculus over graded algebras, noncommutative generalizations of PDEs, quantum vector fields, generalized Nijenhuis torsion, cohomological approach to the geometry of differential equations, the argument shift method, Frölicher structures in the formal Kadomtsev–Petviashvili hierarchy, and computer-based determination of optimal systems of Lie subalgebras. The companion volume (Contemporary Mathematics, Volume 788) is devoted to Geometry and Mathematical Physics.
Publisher: American Mathematical Society
ISBN: 1470473550
Category : Mathematics
Languages : en
Pages : 236
Book Description
This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at Independent University of Moscow and Moscow State University, Moscow, Russia. The papers reflect the modern interplay between partial differential equations and various aspects of algebra and computer science. The topics discussed are: relations between integrability and differential rings, supermanifolds, differential calculus over graded algebras, noncommutative generalizations of PDEs, quantum vector fields, generalized Nijenhuis torsion, cohomological approach to the geometry of differential equations, the argument shift method, Frölicher structures in the formal Kadomtsev–Petviashvili hierarchy, and computer-based determination of optimal systems of Lie subalgebras. The companion volume (Contemporary Mathematics, Volume 788) is devoted to Geometry and Mathematical Physics.
p-adic Differential Equations
Author: Kiran S. Kedlaya
Publisher: Cambridge University Press
ISBN: 1139489208
Category : Mathematics
Languages : en
Pages : 399
Book Description
Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.
Publisher: Cambridge University Press
ISBN: 1139489208
Category : Mathematics
Languages : en
Pages : 399
Book Description
Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.
Algebraic and Topological Aspects of Representation Theory
Author: Mee Seong Im
Publisher: American Mathematical Society
ISBN: 1470470349
Category : Mathematics
Languages : en
Pages : 240
Book Description
This volume contains the proceedings of the virtual AMS Special Session on Geometric and Algebraic Aspects of Quantum Groups and Related Topics, held from November 20–21, 2021. Noncommutative algebras and noncommutative algebraic geometry have been an active field of research for the past several decades, with many important applications in mathematical physics, representation theory, number theory, combinatorics, geometry, low-dimensional topology, and category theory. Papers in this volume contain original research, written by speakers and their collaborators. Many papers also discuss new concepts with detailed examples and current trends with novel and important results, all of which are invaluable contributions to the mathematics community.
Publisher: American Mathematical Society
ISBN: 1470470349
Category : Mathematics
Languages : en
Pages : 240
Book Description
This volume contains the proceedings of the virtual AMS Special Session on Geometric and Algebraic Aspects of Quantum Groups and Related Topics, held from November 20–21, 2021. Noncommutative algebras and noncommutative algebraic geometry have been an active field of research for the past several decades, with many important applications in mathematical physics, representation theory, number theory, combinatorics, geometry, low-dimensional topology, and category theory. Papers in this volume contain original research, written by speakers and their collaborators. Many papers also discuss new concepts with detailed examples and current trends with novel and important results, all of which are invaluable contributions to the mathematics community.