Orthogonal Polynomials in the Spectral Analysis of Markov Processes

Orthogonal Polynomials in the Spectral Analysis of Markov Processes PDF Author: Manuel Domínguez de la Iglesia
Publisher: Cambridge University Press
ISBN: 1009035207
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
In pioneering work in the 1950s, S. Karlin and J. McGregor showed that probabilistic aspects of certain Markov processes can be studied by analyzing orthogonal eigenfunctions of associated operators. In the decades since, many authors have extended and deepened this surprising connection between orthogonal polynomials and stochastic processes. This book gives a comprehensive analysis of the spectral representation of the most important one-dimensional Markov processes, namely discrete-time birth-death chains, birth-death processes and diffusion processes. It brings together the main results from the extensive literature on the topic with detailed examples and applications. Also featuring an introduction to the basic theory of orthogonal polynomials and a selection of exercises at the end of each chapter, it is suitable for graduate students with a solid background in stochastic processes as well as researchers in orthogonal polynomials and special functions who want to learn about applications of their work to probability.

Orthogonal Polynomials in the Spectral Analysis of Markov Processes

Orthogonal Polynomials in the Spectral Analysis of Markov Processes PDF Author: Manuel Domínguez de la Iglesia
Publisher: Cambridge University Press
ISBN: 1009035207
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
In pioneering work in the 1950s, S. Karlin and J. McGregor showed that probabilistic aspects of certain Markov processes can be studied by analyzing orthogonal eigenfunctions of associated operators. In the decades since, many authors have extended and deepened this surprising connection between orthogonal polynomials and stochastic processes. This book gives a comprehensive analysis of the spectral representation of the most important one-dimensional Markov processes, namely discrete-time birth-death chains, birth-death processes and diffusion processes. It brings together the main results from the extensive literature on the topic with detailed examples and applications. Also featuring an introduction to the basic theory of orthogonal polynomials and a selection of exercises at the end of each chapter, it is suitable for graduate students with a solid background in stochastic processes as well as researchers in orthogonal polynomials and special functions who want to learn about applications of their work to probability.

Stochastic Processes and Orthogonal Polynomials

Stochastic Processes and Orthogonal Polynomials PDF Author: Wim Schoutens
Publisher: Springer Science & Business Media
ISBN: 1461211700
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
The book offers an accessible reference for researchers in the probability, statistics and special functions communities. It gives a variety of interdisciplinary relations between the two main ingredients of stochastic processes and orthogonal polynomials. It covers topics like time dependent and asymptotic analysis for birth-death processes and diffusions, martingale relations for Lévy processes, stochastic integrals and Stein's approximation method. Almost all well-known orthogonal polynomials, which are brought together in the so-called Askey Scheme, come into play. This volume clearly illustrates the powerful mathematical role of orthogonal polynomials in the analysis of stochastic processes and is made accessible for all mathematicians with a basic background in probability theory and mathematical analysis. Wim Schoutens is a Postdoctoral Researcher of the Fund for Scientific Research-Flanders (Belgium). He received his PhD in Science from the Catholic University of Leuven, Belgium.

Geometric Methods in Physics XL

Geometric Methods in Physics XL PDF Author: Piotr Kielanowski
Publisher: Springer Nature
ISBN: 3031624076
Category : Geometry
Languages : en
Pages : 466

Get Book Here

Book Description
Zusammenfassung: This volume collects papers based on lectures given at the XL Workshop on Geometric Methods in Physics, held in Białowieża, Poland in July 2023. These chapters provide readers an overview of cutting-edge research in infinite-dimensional groups, integrable systems, quantum groups, Lie algebras and their generalizations and a wide variety of other areas. Specific topics include: Yang-Baxter equation The restricted Siegel disc and restricted Grassmannian Geometric and deformation quantization Degenerate integrability Lie algebroids and groupoids Skew braces Geometric Methods in Physics XL will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas

Equivalents of the Riemann Hypothesis

Equivalents of the Riemann Hypothesis PDF Author: Kevin Broughan
Publisher: Cambridge University Press
ISBN: 1009384805
Category : Mathematics
Languages : en
Pages : 705

Get Book Here

Book Description
This third volume presents further equivalents to the Riemann hypothesis and explores its decidability.

Compound Renewal Processes

Compound Renewal Processes PDF Author: A. A. Borovkov
Publisher: Cambridge University Press
ISBN: 100911560X
Category : Mathematics
Languages : en
Pages :

Get Book Here

Book Description
Compound renewal processes (CRPs) are among the most ubiquitous models arising in applications of probability. At the same time, they are a natural generalization of random walks, the most well-studied classical objects in probability theory. This monograph, written for researchers and graduate students, presents the general asymptotic theory and generalizes many well-known results concerning random walks. The book contains the key limit theorems for CRPs, functional limit theorems, integro-local limit theorems, large and moderately large deviation principles for CRPs in the state space and in the space of trajectories, including large deviation principles in boundary crossing problems for CRPs, with an explicit form of the rate functionals, and an extension of the invariance principle for CRPs to the domain of moderately large and small deviations. Applications establish the key limit laws for Markov additive processes, including limit theorems in the domains of normal and large deviations.

Handbook of Constructive Mathematics

Handbook of Constructive Mathematics PDF Author: Douglas Bridges
Publisher: Cambridge University Press
ISBN: 1316510867
Category : Mathematics
Languages : en
Pages : 863

Get Book Here

Book Description
Gives a complete overview of modern constructive mathematics and its applications through surveys by leading experts.

Harmonic Analysis On Hypergroups: Approximation And Stochastic Sequences

Harmonic Analysis On Hypergroups: Approximation And Stochastic Sequences PDF Author: Rupert Lasser
Publisher: World Scientific
ISBN: 9811266212
Category : Mathematics
Languages : en
Pages : 621

Get Book Here

Book Description
The book aims at giving a monographic presentation of the abstract harmonic analysis of hypergroups, while combining it with applied topics of spectral analysis, approximation by orthogonal expansions and stochastic sequences. Hypergroups are locally compact Hausdorff spaces equipped with a convolution, an involution and a unit element. Related algebraic structures had already been studied by Frobenius around 1900. Their axiomatic characterisation in harmonic analysis was later developed in the 1970s. Hypergoups naturally emerge in seemingly different application areas as time series analysis, probability theory and theoretical physics.The book presents harmonic analysis on commutative and polynomial hypergroups as well as weakly stationary random fields and sequences thereon. For polynomial hypergroups also difference equations and stationary sequences are considered. At greater extent than in the existing literature, the book compiles a rather comprehensive list of hypergroups, in particular of polynomial hypergroups. With an eye on readers at advanced undergraduate and graduate level, the proofs are generally worked out in careful detail. The bibliography is extensive.

Higher Special Functions

Higher Special Functions PDF Author: Wolfgang Lay
Publisher: Cambridge University Press
ISBN: 1009546589
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
Higher special functions emerge from boundary eigenvalue problems of Fuchsian differential equations with more than three singularities. This detailed reference provides solutions for singular boundary eigenvalue problems of linear ordinary differential equations of second order, exploring previously unknown methods for finding higher special functions. Starting from the fact that it is the singularities of a differential equation that determine the local, as well as the global, behaviour of its solutions, the author develops methods that are both new and efficient and lead to functional relationships that were previously unknown. All the developments discussed are placed within their historical context, allowing the reader to trace the roots of the theory back through the work of many generations of great mathematicians. Particular attention is given to the work of George Cecil Jaffé, who laid the foundation with the calculation of the quantum mechanical energy levels of the hydrogen molecule ion.

Coxeter Bialgebras

Coxeter Bialgebras PDF Author: Marcelo Aguiar
Publisher: Cambridge University Press
ISBN: 100924373X
Category : Mathematics
Languages : en
Pages : 897

Get Book Here

Book Description
The goal of this monograph is to develop Hopf theory in the setting of a real reflection arrangement. The central notion is that of a Coxeter bialgebra which generalizes the classical notion of a connected graded Hopf algebra. The authors also introduce the more structured notion of a Coxeter bimonoid and connect the two notions via a family of functors called Fock functors. These generalize similar functors connecting Hopf monoids in the category of Joyal species and connected graded Hopf algebras. This monograph opens a new chapter in Coxeter theory as well as in Hopf theory, connecting the two. It also relates fruitfully to many other areas of mathematics such as discrete geometry, semigroup theory, associative algebras, algebraic Lie theory, operads, and category theory. It is carefully written, with effective use of tables, diagrams, pictures, and summaries. It will be of interest to students and researchers alike.

Linear State/Signal Systems

Linear State/Signal Systems PDF Author: Damir Z. Arov
Publisher: Cambridge University Press
ISBN: 1009021737
Category : Mathematics
Languages : en
Pages : 1050

Get Book Here

Book Description
The authors explain in this work a new approach to observing and controlling linear systems whose inputs and outputs are not fixed in advance. They cover a class of linear time-invariant state/signal system that is general enough to include most of the standard classes of linear time-invariant dynamical systems, but simple enough that it is easy to understand the fundamental principles. They begin by explaining the basic theory of finite-dimensional and bounded systems in a way suitable for graduate courses in systems theory and control. They then proceed to the more advanced infinite-dimensional setting, opening up new ways for researchers to study distributed parameter systems, including linear port-Hamiltonian systems and boundary triplets. They include the general non-passive part of the theory in continuous and discrete time, and provide a short introduction to the passive situation. Numerous examples from circuit theory are used to illustrate the theory.