Author: Alan L. Lewis
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 372
Book Description
Option Valuation Under Stochastic Volatility
Author: Alan L. Lewis
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 372
Book Description
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 372
Book Description
Stochastic Volatility Modeling
Author: Lorenzo Bergomi
Publisher: CRC Press
ISBN: 1482244071
Category : Business & Economics
Languages : en
Pages : 520
Book Description
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
Publisher: CRC Press
ISBN: 1482244071
Category : Business & Economics
Languages : en
Pages : 520
Book Description
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives
Author: Jean-Pierre Fouque
Publisher: Cambridge University Press
ISBN: 113950245X
Category : Mathematics
Languages : en
Pages : 456
Book Description
Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.
Publisher: Cambridge University Press
ISBN: 113950245X
Category : Mathematics
Languages : en
Pages : 456
Book Description
Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.
Option Valuation Under Stochastic Volatility II
Author: Alan L. Lewis
Publisher:
ISBN: 9780967637211
Category :
Languages : en
Pages : 748
Book Description
This book is a sequel to the author's well-received "Option Valuation under Stochastic Volatility." It extends that work to jump-diffusions and many related topics in quantitative finance. Topics include spectral theory for jump-diffusions, boundary behavior for short-term interest rate models, modelling VIX options, inference theory, discrete dividends, and more. It provides approximately 750 pages of original research in 26 chapters, with 165 illustrations, Mathematica, and some C/C++ codes. The first 12 chapters (550 pages) are completely new. Also included are reprints of selected previous publications of the author for convenient reference. The book should interest both researchers and quantitatively-oriented investors and traders. First 12 chapters: Slow Reflection, Jump-Returns, & Short-term Interest Rates Spectral Theory for Jump-diffusions Joint Time Series Modelling of SPX and VIX Modelling VIX Options (and Futures) under Stochastic Volatility Stochastic Volatility as a Hidden Markov Model Continuous-time Inference: Mathematical Methods and Worked Examples A Closer Look at the Square-root and 3/2-model A Closer Look at the SABR Model Back to Basics: An Update on the Discrete Dividend Problem PDE Numerics without the Pain Exact Solution to Double Barrier Problems under a Class of Processes Advanced Smile Asymptotics: Geometry, Geodesics, and All That
Publisher:
ISBN: 9780967637211
Category :
Languages : en
Pages : 748
Book Description
This book is a sequel to the author's well-received "Option Valuation under Stochastic Volatility." It extends that work to jump-diffusions and many related topics in quantitative finance. Topics include spectral theory for jump-diffusions, boundary behavior for short-term interest rate models, modelling VIX options, inference theory, discrete dividends, and more. It provides approximately 750 pages of original research in 26 chapters, with 165 illustrations, Mathematica, and some C/C++ codes. The first 12 chapters (550 pages) are completely new. Also included are reprints of selected previous publications of the author for convenient reference. The book should interest both researchers and quantitatively-oriented investors and traders. First 12 chapters: Slow Reflection, Jump-Returns, & Short-term Interest Rates Spectral Theory for Jump-diffusions Joint Time Series Modelling of SPX and VIX Modelling VIX Options (and Futures) under Stochastic Volatility Stochastic Volatility as a Hidden Markov Model Continuous-time Inference: Mathematical Methods and Worked Examples A Closer Look at the Square-root and 3/2-model A Closer Look at the SABR Model Back to Basics: An Update on the Discrete Dividend Problem PDE Numerics without the Pain Exact Solution to Double Barrier Problems under a Class of Processes Advanced Smile Asymptotics: Geometry, Geodesics, and All That
Introduction to Option Pricing Theory
Author: Gopinath Kallianpur
Publisher: Springer Science & Business Media
ISBN: 1461205115
Category : Mathematics
Languages : en
Pages : 266
Book Description
Since the appearance of seminal works by R. Merton, and F. Black and M. Scholes, stochastic processes have assumed an increasingly important role in the development of the mathematical theory of finance. This work examines, in some detail, that part of stochastic finance pertaining to option pricing theory. Thus the exposition is confined to areas of stochastic finance that are relevant to the theory, omitting such topics as futures and term-structure. This self-contained work begins with five introductory chapters on stochastic analysis, making it accessible to readers with little or no prior knowledge of stochastic processes or stochastic analysis. These chapters cover the essentials of Ito's theory of stochastic integration, integration with respect to semimartingales, Girsanov's Theorem, and a brief introduction to stochastic differential equations. Subsequent chapters treat more specialized topics, including option pricing in discrete time, continuous time trading, arbitrage, complete markets, European options (Black and Scholes Theory), American options, Russian options, discrete approximations, and asset pricing with stochastic volatility. In several chapters, new results are presented. A unique feature of the book is its emphasis on arbitrage, in particular, the relationship between arbitrage and equivalent martingale measures (EMM), and the derivation of necessary and sufficient conditions for no arbitrage (NA). {\it Introduction to Option Pricing Theory} is intended for students and researchers in statistics, applied mathematics, business, or economics, who have a background in measure theory and have completed probability theory at the intermediate level. The work lends itself to self-study, as well as to a one-semester course at the graduate level.
Publisher: Springer Science & Business Media
ISBN: 1461205115
Category : Mathematics
Languages : en
Pages : 266
Book Description
Since the appearance of seminal works by R. Merton, and F. Black and M. Scholes, stochastic processes have assumed an increasingly important role in the development of the mathematical theory of finance. This work examines, in some detail, that part of stochastic finance pertaining to option pricing theory. Thus the exposition is confined to areas of stochastic finance that are relevant to the theory, omitting such topics as futures and term-structure. This self-contained work begins with five introductory chapters on stochastic analysis, making it accessible to readers with little or no prior knowledge of stochastic processes or stochastic analysis. These chapters cover the essentials of Ito's theory of stochastic integration, integration with respect to semimartingales, Girsanov's Theorem, and a brief introduction to stochastic differential equations. Subsequent chapters treat more specialized topics, including option pricing in discrete time, continuous time trading, arbitrage, complete markets, European options (Black and Scholes Theory), American options, Russian options, discrete approximations, and asset pricing with stochastic volatility. In several chapters, new results are presented. A unique feature of the book is its emphasis on arbitrage, in particular, the relationship between arbitrage and equivalent martingale measures (EMM), and the derivation of necessary and sufficient conditions for no arbitrage (NA). {\it Introduction to Option Pricing Theory} is intended for students and researchers in statistics, applied mathematics, business, or economics, who have a background in measure theory and have completed probability theory at the intermediate level. The work lends itself to self-study, as well as to a one-semester course at the graduate level.
Derivatives in Financial Markets with Stochastic Volatility
Author: Jean-Pierre Fouque
Publisher: Cambridge University Press
ISBN: 9780521791632
Category : Business & Economics
Languages : en
Pages : 222
Book Description
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Publisher: Cambridge University Press
ISBN: 9780521791632
Category : Business & Economics
Languages : en
Pages : 222
Book Description
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Frontiers in Stochastic Analysis–BSDEs, SPDEs and their Applications
Author: Samuel N. Cohen
Publisher: Springer Nature
ISBN: 3030222853
Category : Mathematics
Languages : en
Pages : 303
Book Description
This collection of selected, revised and extended contributions resulted from a Workshop on BSDEs, SPDEs and their Applications that took place in Edinburgh, Scotland, July 2017 and included the 8th World Symposium on BSDEs. The volume addresses recent advances involving backward stochastic differential equations (BSDEs) and stochastic partial differential equations (SPDEs). These equations are of fundamental importance in modelling of biological, physical and economic systems, and underpin many problems in control of random systems, mathematical finance, stochastic filtering and data assimilation. The papers in this volume seek to understand these equations, and to use them to build our understanding in other areas of mathematics. This volume will be of interest to those working at the forefront of modern probability theory, both established researchers and graduate students.
Publisher: Springer Nature
ISBN: 3030222853
Category : Mathematics
Languages : en
Pages : 303
Book Description
This collection of selected, revised and extended contributions resulted from a Workshop on BSDEs, SPDEs and their Applications that took place in Edinburgh, Scotland, July 2017 and included the 8th World Symposium on BSDEs. The volume addresses recent advances involving backward stochastic differential equations (BSDEs) and stochastic partial differential equations (SPDEs). These equations are of fundamental importance in modelling of biological, physical and economic systems, and underpin many problems in control of random systems, mathematical finance, stochastic filtering and data assimilation. The papers in this volume seek to understand these equations, and to use them to build our understanding in other areas of mathematics. This volume will be of interest to those working at the forefront of modern probability theory, both established researchers and graduate students.
Option Pricing Models and Volatility Using Excel-VBA
Author: Fabrice D. Rouah
Publisher: John Wiley & Sons
ISBN: 1118429206
Category : Business & Economics
Languages : en
Pages : 456
Book Description
This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland
Publisher: John Wiley & Sons
ISBN: 1118429206
Category : Business & Economics
Languages : en
Pages : 456
Book Description
This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland
The Volatility Smile
Author: Emanuel Derman
Publisher: John Wiley & Sons
ISBN: 1118959167
Category : Business & Economics
Languages : en
Pages : 528
Book Description
The Volatility Smile The Black-Scholes-Merton option model was the greatest innovation of 20th century finance, and remains the most widely applied theory in all of finance. Despite this success, the model is fundamentally at odds with the observed behavior of option markets: a graph of implied volatilities against strike will typically display a curve or skew, which practitioners refer to as the smile, and which the model cannot explain. Option valuation is not a solved problem, and the past forty years have witnessed an abundance of new models that try to reconcile theory with markets. The Volatility Smile presents a unified treatment of the Black-Scholes-Merton model and the more advanced models that have replaced it. It is also a book about the principles of financial valuation and how to apply them. Celebrated author and quant Emanuel Derman and Michael B. Miller explain not just the mathematics but the ideas behind the models. By examining the foundations, the implementation, and the pros and cons of various models, and by carefully exploring their derivations and their assumptions, readers will learn not only how to handle the volatility smile but how to evaluate and build their own financial models. Topics covered include: The principles of valuation Static and dynamic replication The Black-Scholes-Merton model Hedging strategies Transaction costs The behavior of the volatility smile Implied distributions Local volatility models Stochastic volatility models Jump-diffusion models The first half of the book, Chapters 1 through 13, can serve as a standalone textbook for a course on option valuation and the Black-Scholes-Merton model, presenting the principles of financial modeling, several derivations of the model, and a detailed discussion of how it is used in practice. The second half focuses on the behavior of the volatility smile, and, in conjunction with the first half, can be used for as the basis for a more advanced course.
Publisher: John Wiley & Sons
ISBN: 1118959167
Category : Business & Economics
Languages : en
Pages : 528
Book Description
The Volatility Smile The Black-Scholes-Merton option model was the greatest innovation of 20th century finance, and remains the most widely applied theory in all of finance. Despite this success, the model is fundamentally at odds with the observed behavior of option markets: a graph of implied volatilities against strike will typically display a curve or skew, which practitioners refer to as the smile, and which the model cannot explain. Option valuation is not a solved problem, and the past forty years have witnessed an abundance of new models that try to reconcile theory with markets. The Volatility Smile presents a unified treatment of the Black-Scholes-Merton model and the more advanced models that have replaced it. It is also a book about the principles of financial valuation and how to apply them. Celebrated author and quant Emanuel Derman and Michael B. Miller explain not just the mathematics but the ideas behind the models. By examining the foundations, the implementation, and the pros and cons of various models, and by carefully exploring their derivations and their assumptions, readers will learn not only how to handle the volatility smile but how to evaluate and build their own financial models. Topics covered include: The principles of valuation Static and dynamic replication The Black-Scholes-Merton model Hedging strategies Transaction costs The behavior of the volatility smile Implied distributions Local volatility models Stochastic volatility models Jump-diffusion models The first half of the book, Chapters 1 through 13, can serve as a standalone textbook for a course on option valuation and the Black-Scholes-Merton model, presenting the principles of financial modeling, several derivations of the model, and a detailed discussion of how it is used in practice. The second half focuses on the behavior of the volatility smile, and, in conjunction with the first half, can be used for as the basis for a more advanced course.
Option Pricing in Incomplete Markets
Author: Yoshio Miyahara
Publisher: World Scientific
ISBN: 1848163487
Category : Electronic books
Languages : en
Pages : 200
Book Description
This volume offers the reader practical methods to compute the option prices in the incomplete asset markets. The [GLP & MEMM] pricing models are clearly introduced, and the properties of these models are discussed in great detail. It is shown that the geometric L(r)vy process (GLP) is a typical example of the incomplete market, and that the MEMM (minimal entropy martingale measure) is an extremely powerful pricing measure. This volume also presents the calibration procedure of the [GLP \& MEMM] model that has been widely used in the application of practical problem
Publisher: World Scientific
ISBN: 1848163487
Category : Electronic books
Languages : en
Pages : 200
Book Description
This volume offers the reader practical methods to compute the option prices in the incomplete asset markets. The [GLP & MEMM] pricing models are clearly introduced, and the properties of these models are discussed in great detail. It is shown that the geometric L(r)vy process (GLP) is a typical example of the incomplete market, and that the MEMM (minimal entropy martingale measure) is an extremely powerful pricing measure. This volume also presents the calibration procedure of the [GLP \& MEMM] model that has been widely used in the application of practical problem