Optimization and Energy Maximizing Control Systems for Wave Energy Converters

Optimization and Energy Maximizing Control Systems for Wave Energy Converters PDF Author: Giuseppe Giorgi
Publisher: Mdpi AG
ISBN: 9783036528243
Category : Technology & Engineering
Languages : en
Pages : 266

Get Book Here

Book Description
The book, "Optimization and Energy Maximizing Control Systems for Wave Energy Converters", presents eleven contributions on the latest scientific advancements of 2020-2021 in wave energy technology optimization and control, including holistic techno-economic optimization, inclusion of nonlinear effects, and real-time implementations of estimation and control algorithms.

Optimization and Energy Maximizing Control Systems for Wave Energy Converters

Optimization and Energy Maximizing Control Systems for Wave Energy Converters PDF Author: Giuseppe Giorgi
Publisher: Mdpi AG
ISBN: 9783036528243
Category : Technology & Engineering
Languages : en
Pages : 266

Get Book Here

Book Description
The book, "Optimization and Energy Maximizing Control Systems for Wave Energy Converters", presents eleven contributions on the latest scientific advancements of 2020-2021 in wave energy technology optimization and control, including holistic techno-economic optimization, inclusion of nonlinear effects, and real-time implementations of estimation and control algorithms.

Optimization and Energy Maximizing Control Systems for Wave Energy Converters

Optimization and Energy Maximizing Control Systems for Wave Energy Converters PDF Author: Giuseppe Giorgi
Publisher:
ISBN: 9783036528250
Category :
Languages : en
Pages : 266

Get Book Here

Book Description
The book, “Optimization and Energy Maximizing Control Systems for Wave Energy Converters”, presents eleven contributions on the latest scientific advancements of 2020-2021 in wave energy technology optimization and control, including holistic techno-economic optimization, inclusion of nonlinear effects, and real-time implementations of estimation and control algorithms.

Optimization and Energy Maximizing Control Systems for Wave Energy Converters II

Optimization and Energy Maximizing Control Systems for Wave Energy Converters II PDF Author: Giuseppe Giorgi
Publisher:
ISBN: 9783725818990
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
This reprint delves into the forefront of research on optimizing and maximizing energy control systems for wave energy converters (WECs). It explores the significant advancements and challenges in the field, emphasizing the importance of control systems in enhancing energy efficiency and reducing costs. The compilation includes studies on hydraulic-based power take-off (PTO) systems, the integration of hydrodynamic and generator models, spectral-domain modeling, and innovative control strategies like model predictive control and reinforcement learning. Additionally, it addresses the critical aspects of robustness, stochastic modeling, and reliability-based design optimization. Leading experts share their insights, findings, and methodologies, offering a blend of theoretical perspectives and practical solutions. This reprint serves as an essential resource for researchers and technology developers, aiming to drive forward the commercialization and efficiency of WECs, ultimately contributing to the global shift towards sustainable and renewable energy sources.

OPTIMIZATION AND CONTROL OF ARRAYS OF WAVE ENERGY CONVERTERS

OPTIMIZATION AND CONTROL OF ARRAYS OF WAVE ENERGY CONVERTERS PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract : Wave Energy Converter Array is a practical approach to harvest ocean wave energy. To leverage the potential of the WEC array in terms of energy extraction, it is essential to have a properly designed array configuration and control system. This thesis explores the optimal configuration of Wave Energy Converters (WECs) arrays and their optimal control. The optimization of the WEC array allows both dimensions of individual WECs as well as the array layout to varying. In the first optimization problem, cylindrical buoys are assumed in the array where their radii and drafts are optimization parameters. Genetic Algorithms are used for optimization. Three case studies are investigated of different array sizes: 3, 5, and 7 devices in the array. Two types of controls are assumed; the first is the standard impedance matching control while the second is a derivative control. The numerical test cases demonstrate that a higher q-factor is achieved when optimizing the buoys dimensions simultaneously with the array layout. In the conducted test cases, it is shown that optimizing the array layout can increase the q-factor on average by 39.21% when using optimal control, and increase it on average by a factor of 8.87% when using a derivative control. Arrays of wave energy converters (WECs) usually have large spacing between members of the array to avoid negative hydrodynamic interaction between members in the array. Errors in estimating the spacing between members may result in a significant degradation in the performance of the array in terms of the total harvested energy, due to destructive hydrodynamic interaction between members of the array. In this thesis, a hybrid design of wave energy converter arrays, that contains two types of WECs, the heaving buoys, and the floating flap-type devices, is investigated and compared against traditional WEC arrays of heaving buoys. The resulting q-factor is less sensitive to deviations in the spacing from the design layout. This hybrid array, hence, enables more WECs in the same ocean area. The two types of arrays are tested using 40 layouts that have different separation distances ranging from small to large. With the hybrid configuration, the array achieved a variance of the q-factor as low as 0.006. The traditional array has a variance of 0.024 which is four times larger. The optimization is conducted on the hybrid array with both layout and dimension as design variables. The optimal control algorithm for the WEC array is developed using the optimality condition. Devices in the array are assumed to be identical heaving buoys. The optimization objective is to maximize energy extraction at each time step. Both regular and irregular waves are used to excite the array. The unconstrained optimal control problem is solved with saturation on the control force. The solutions show that good wave estimations and sufficient accuracy of the radiation sub-system are the keys to the desired WEC array performance.

Hydrodynamic Control of Wave Energy Devices

Hydrodynamic Control of Wave Energy Devices PDF Author: Umesh A. Korde
Publisher: Cambridge University Press
ISBN: 1316720640
Category : Technology & Engineering
Languages : en
Pages : 385

Get Book Here

Book Description
With this self-contained and comprehensive text, students and researchers will gain a detailed understanding of the fundamental aspects of the hydrodynamic control of wave energy converters. Such control is necessary to maximise energy capture for a given device configuration and plays a major role in efforts to make wave energy economic. Covering a wide range of disciplines, the reader is taken from the mathematical and technical fundamentals, through the main pillars of wave energy hydrodynamic control, right through to state-of-the-art algorithms for hydrodynamic control. The various operating principles of wave energy converters are exposed and the unique aspects of the hydrodynamic control problem highlighted, with a variety of potential solutions discussed. Supporting material on wave forecasting and the interaction of the hydrodynamic control problem with other aspects of wave energy device optimisation, such as device geometry optimisation and optimal device array layout, is also provided.

OPTIMIZATION OF SHAPE AND CONTROL OF LINEAR AND NONLINEAR WAVE ENERGY CONVERTERS

OPTIMIZATION OF SHAPE AND CONTROL OF LINEAR AND NONLINEAR WAVE ENERGY CONVERTERS PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract : In this dissertation, we address the optimal control and shape optimization of Wave Energy Converters. The wave energy converters considered in this study are the single-body heaving wave energy converters, and the two-body heaving wave energy converters. Different types of wave energy converters are modeled mathematically, and different optimal controls are developed for them. The concept of shape optimization is introduced in this dissertation; the goal is to leverage nonlinear hydrodynamic forces which are dependent on the buoy shape. In this dissertation, shape optimization is carried out and its impact on energy extraction is investigated. In all the studies conducted in this dissertation the objective is set to maximize the harvested energy, in various wave climates. The development of a multi-resonant feedback controller is first introduced which targets both amplitude and phase through feedback that is constructed from individual frequency components that comes from the spectral of the measurements signal. Each individual frequency uses a Proportional-Derivative control to provide both optimal resistive and reactive elements. Two-body heaving pointer absorbers are also investigated. Power conversion is from the relative have oscillation between the two bodies. The oscillation is controlled on a wave-by-wave basis using near-optimal feed-forward control. Chapter 4 presents the dynamic formulation used to evaluate the near-optimal, wave-by-wave control forces in the time domain. Also examined are the reaction-frame geometries for their impact on overall power capture through favorable hydrodynamic inter-actions. Performance is evaluated in a range of wave conditions sampled over a year at a chosen site of deployment. It is found that control may be able to provide the required amounts of power to sustain instrument operation at the chosen site, but also that energy storage options be worth pursuing. Chapter 5 presents an optimization approach to design axisymmetric wave energy converters (WECs) based on a non-linear hydrodynamic model. The time domain nonlinear Froude-Krylov force can be computed for a complex buoy shape, by adopting analytical formulas of its basic shape components. The time domain Forude-Krylov force is decomposed into its dynamic and static components, and then contribute to the calculation of the excitation force and the hydro-static force. A non-linear control is assumed in the form of the combination of linear and non-linear damping terms. A variable size genetic algorithm (GA) optimization tool is developed to search for the optimal buoy shape along with the optimal control coefficients simultaneously. Chromosome of the GA tool is designed to improve computational efficiency and to leverage variable size genes to search for the optimal non-linear buoy shape. Different criteria of wave energy conversion can be implemented by the variable size GA tool. Simulation results presented in this thesis show that it is possible to find non-linear buoy shapes and non-linear controllers that take advantage of non-linear hydrodynamics to improve energy harvesting efficiency with out adding reactive terms to the system.

Ocean Wave Energy Conversion

Ocean Wave Energy Conversion PDF Author: Aurelien Babarit
Publisher: Elsevier
ISBN: 0081023901
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
The waves that animate the surface of the oceans represent a deposit of renewable energy that for the most part is still unexploited today. This is not for lack of effort, as for more than two hundred years inventors, researchers and engineers have struggled to develop processes and systems to recover the energy of the waves. While all of these efforts have failed to converge towards a satisfactory technological solution, the result is a rich scientific and technical literature as well as extensive and varied feedback from experience. For the uninitiated, this abundance is an obstacle. In order to facilitate familiarization with the subject, we propose in this work a summary of the state of knowledge on the potential of wave energy as well as on the processes and technologies of its recovery (wave energy converters). In particular, we focus on the problem of positioning wave energy in the electricity market, the development of wave energy conversion technologies from a historical perspective, and finally the energy performance of the devices. This work is aimed at students, researchers, developers, industry professionals and decision makers who wish to acquire a global perspective and the necessary tools to understand the field. - Reviews the state of knowledge and developments on wave energy recovery - Presents the history of wave energy recovery - Classifies the various systems for recovering this type of energy

Ocean Wave Energy

Ocean Wave Energy PDF Author: Joao Cruz
Publisher: Springer Science & Business Media
ISBN: 3540748954
Category : Technology & Engineering
Languages : en
Pages : 435

Get Book Here

Book Description
The authors of this timely reference provide an updated and global view on ocean wave energy conversion – and they do so for wave energy developers as well as for students and professors. The book is orientated to the practical solutions that this new industry has found so far and the problems that any device needs to face. It describes the actual principles applied to machines that convert wave power to electricity and examines state-of-the-art modern systems.

Renewable Energy in Marine Environment

Renewable Energy in Marine Environment PDF Author: Eugen Rusu
Publisher: MDPI
ISBN: 3039285289
Category : Technology & Engineering
Languages : en
Pages : 324

Get Book Here

Book Description
The effects of human-caused global warming are obvious, requiring new strategies and approaches. The concept of business-as-usual is now no longer beneficial. Extraction of renewable energy in marine environments represents a viable solution and an important path for the future. These huge renewable energy resources in seas and oceans can be harvested, including wind, tide, and waves. Despite the initial difficulties related mostly to the elevated operational risks in the harsh marine environment, newly developed technologies are economically effective or promising. Simultaneously, many challenges remain to be faced. These are the main issues targeted by the present book, which is associated with the Special Issue of Energies Journal entitled “Renewable Energy in Marine Environment”. Papers on innovative technical developments, reviews, case studies, and analytics, as well as assessments, and papers from different disciplines that are relevant to the topic are included. From this perspective, we hope that the results presented are of interest to for scientists and those in related fields such as energy and marine environments, as well as for a wider audience.

Handbook of Ocean Wave Energy

Handbook of Ocean Wave Energy PDF Author: Arthur Pecher
Publisher: Springer
ISBN: 331939889X
Category : Technology & Engineering
Languages : en
Pages : 305

Get Book Here

Book Description
This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.