Author: Nizar Touzi
Publisher: Springer Science & Business Media
ISBN: 1461442869
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.
Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE
Author: Nizar Touzi
Publisher: Springer Science & Business Media
ISBN: 1461442869
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.
Publisher: Springer Science & Business Media
ISBN: 1461442869
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.
Optimal Stochastic Control, Stochastic Target Problems, and Backward Sde
Author: Springer
Publisher:
ISBN: 9781461442875
Category :
Languages : en
Pages : 226
Book Description
Publisher:
ISBN: 9781461442875
Category :
Languages : en
Pages : 226
Book Description
Backward Stochastic Differential Equations
Author: N El Karoui
Publisher: CRC Press
ISBN: 9780582307339
Category : Mathematics
Languages : en
Pages : 236
Book Description
This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.
Publisher: CRC Press
ISBN: 9780582307339
Category : Mathematics
Languages : en
Pages : 236
Book Description
This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.
Backward Stochastic Differential Equations
Author: Jianfeng Zhang
Publisher: Springer
ISBN: 1493972561
Category : Mathematics
Languages : en
Pages : 392
Book Description
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
Publisher: Springer
ISBN: 1493972561
Category : Mathematics
Languages : en
Pages : 392
Book Description
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
An Introduction to Optimal Control of FBSDE with Incomplete Information
Author: Guangchen Wang
Publisher: Springer
ISBN: 3319790390
Category : Mathematics
Languages : en
Pages : 124
Book Description
This book focuses on maximum principle and verification theorem for incomplete information forward-backward stochastic differential equations (FBSDEs) and their applications in linear-quadratic optimal controls and mathematical finance. Lots of interesting phenomena arising from the area of mathematical finance can be described by FBSDEs. Optimal control problems of FBSDEs are theoretically important and practically relevant. A standard assumption in the literature is that the stochastic noises in the model are completely observed. However, this is rarely the case in real world situations. The optimal control problems under complete information are studied extensively. Nevertheless, very little is known about these problems when the information is not complete. The aim of this book is to fill this gap. This book is written in a style suitable for graduate students and researchers in mathematics and engineering with basic knowledge of stochastic process, optimal control and mathematical finance.
Publisher: Springer
ISBN: 3319790390
Category : Mathematics
Languages : en
Pages : 124
Book Description
This book focuses on maximum principle and verification theorem for incomplete information forward-backward stochastic differential equations (FBSDEs) and their applications in linear-quadratic optimal controls and mathematical finance. Lots of interesting phenomena arising from the area of mathematical finance can be described by FBSDEs. Optimal control problems of FBSDEs are theoretically important and practically relevant. A standard assumption in the literature is that the stochastic noises in the model are completely observed. However, this is rarely the case in real world situations. The optimal control problems under complete information are studied extensively. Nevertheless, very little is known about these problems when the information is not complete. The aim of this book is to fill this gap. This book is written in a style suitable for graduate students and researchers in mathematics and engineering with basic knowledge of stochastic process, optimal control and mathematical finance.
Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications
Author: Rene Carmona
Publisher: SIAM
ISBN: 1611974232
Category : Mathematics
Languages : en
Pages : 263
Book Description
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.
Publisher: SIAM
ISBN: 1611974232
Category : Mathematics
Languages : en
Pages : 263
Book Description
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.
Mathematical Control Theory for Stochastic Partial Differential Equations
Author: Qi Lü
Publisher: Springer Nature
ISBN: 3030823318
Category : Science
Languages : en
Pages : 592
Book Description
This is the first book to systematically present control theory for stochastic distributed parameter systems, a comparatively new branch of mathematical control theory. The new phenomena and difficulties arising in the study of controllability and optimal control problems for this type of system are explained in detail. Interestingly enough, one has to develop new mathematical tools to solve some problems in this field, such as the global Carleman estimate for stochastic partial differential equations and the stochastic transposition method for backward stochastic evolution equations. In a certain sense, the stochastic distributed parameter control system is the most general control system in the context of classical physics. Accordingly, studying this field may also yield valuable insights into quantum control systems. A basic grasp of functional analysis, partial differential equations, and control theory for deterministic systems is the only prerequisite for reading this book.
Publisher: Springer Nature
ISBN: 3030823318
Category : Science
Languages : en
Pages : 592
Book Description
This is the first book to systematically present control theory for stochastic distributed parameter systems, a comparatively new branch of mathematical control theory. The new phenomena and difficulties arising in the study of controllability and optimal control problems for this type of system are explained in detail. Interestingly enough, one has to develop new mathematical tools to solve some problems in this field, such as the global Carleman estimate for stochastic partial differential equations and the stochastic transposition method for backward stochastic evolution equations. In a certain sense, the stochastic distributed parameter control system is the most general control system in the context of classical physics. Accordingly, studying this field may also yield valuable insights into quantum control systems. A basic grasp of functional analysis, partial differential equations, and control theory for deterministic systems is the only prerequisite for reading this book.
Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Numerical Methods for Stochastic Control Problems in Continuous Time
Author: Harold Kushner
Publisher: Springer Science & Business Media
ISBN: 146130007X
Category : Mathematics
Languages : en
Pages : 480
Book Description
Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.
Publisher: Springer Science & Business Media
ISBN: 146130007X
Category : Mathematics
Languages : en
Pages : 480
Book Description
Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.
Stochastic Calculus and Applications
Author: Samuel N. Cohen
Publisher: Birkhäuser
ISBN: 1493928678
Category : Mathematics
Languages : en
Pages : 673
Book Description
Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to work with stochastic calculus as well as with its applications."–Zentralblatt (from review of the First Edition)
Publisher: Birkhäuser
ISBN: 1493928678
Category : Mathematics
Languages : en
Pages : 673
Book Description
Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to work with stochastic calculus as well as with its applications."–Zentralblatt (from review of the First Edition)