On the Determination of Elastic and Inelastic Nuclear Observables from Lattice QCD

On the Determination of Elastic and Inelastic Nuclear Observables from Lattice QCD PDF Author: Raúl A. Briceño
Publisher:
ISBN:
Category : Lattice field theory
Languages : en
Pages : 169

Get Book Here

Book Description
One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of the strong interaction, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear processes which would impact our understanding of environments ranging from big bang nucleosynthesis, stars and supernovae, to nuclear reactors and high-energy density facilities. Such calculations, being truly ab-initio, would include all two-nucleon and three-nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD (LQCD) provides the only reliable option for performing calculations of low-energy hadronic observables. LQCD calculations are necessarily performed in a finite Euclidean spacetime. As a result, it is necessary to construct formalism that maps the finite-volume observables determined via LQCD to the infinite-volume quantities of interest. For 2 --> 2 bosonic elastic scattering processes, Martin Luscher first showed that one can obtain the physical scattering phase shifts from the finite volume (FV) two-particle spectrum (for lattices with spatial extents that are much larger than the range of interactions). This thesis discusses the extension of this formalism for three important classes of systems. Chapter 1 discusses key aspects of the standard model, paying close attention to QCD at low-energies and the necessity of effective field theories (EFTs) and LQCD. Chapter 2 reviews the result by Luscher for two bosons with arbitrary momentum. After a detailed derivation of the quantization condition for two bosons below the inelastic threshold, it is straightforward to determine the spectrum of a system with arbitrary number of channels composed of two hadrons with nonzero total momentum. In Section 2.3, Luscher's result is re-derived using the auxilary field formalism, also known as the "dimer formalism". Chapter 3 briefly reviews the complexity of the nuclear sector, as compared to the scalar sector, and it shown that this rich structure can be recovered by the generalization of the auxilary field formalism for the two nucleon system. Using this formalism, the quantization condition for two non-relativistic nucleons1 in a finite volume is derived. The result presented hold for a two nucleon system with arbitrary partial-waves, spin and parity. Provided are the explicit relations among scattering parameters and their corresponding point group symmetry class eigenenergies with orbital angular momentum l [less than or equal to] 4. Finally, Chapter 4 presents the quantization condition for the spectrum of three identical bosons in a finite volume. Unlike the two-body analogue, the quantization condition of the three-body sector is not algebraic and in general requires numerically solving an integral equation. However, for systems with an attractive two-body force that supports a twobody bound-state, a diboson, and for energies below the diboson breakup, the quantization condition reduces to the well-known Luscher formula with exponential corrections in volume that scale with the diboson binding momentum. To accurately determine infinite volume phase shifts, it is necessary to extrapolate the phase shifts obtained from the Luscher formula for the boson-diboson system to the infinite volume limit. For energies above the breakup threshold, or for systems with no two-body bound-state (with only scattering states and resonances) the Luscher formula gets power-law volume corrections and consequently fails to describe the three-particle system. These corrections are nonperturbatively included in the quantization condition presented.

On the Determination of Elastic and Inelastic Nuclear Observables from Lattice QCD

On the Determination of Elastic and Inelastic Nuclear Observables from Lattice QCD PDF Author: Raúl A. Briceño
Publisher:
ISBN:
Category : Lattice field theory
Languages : en
Pages : 169

Get Book Here

Book Description
One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of the strong interaction, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear processes which would impact our understanding of environments ranging from big bang nucleosynthesis, stars and supernovae, to nuclear reactors and high-energy density facilities. Such calculations, being truly ab-initio, would include all two-nucleon and three-nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD (LQCD) provides the only reliable option for performing calculations of low-energy hadronic observables. LQCD calculations are necessarily performed in a finite Euclidean spacetime. As a result, it is necessary to construct formalism that maps the finite-volume observables determined via LQCD to the infinite-volume quantities of interest. For 2 --> 2 bosonic elastic scattering processes, Martin Luscher first showed that one can obtain the physical scattering phase shifts from the finite volume (FV) two-particle spectrum (for lattices with spatial extents that are much larger than the range of interactions). This thesis discusses the extension of this formalism for three important classes of systems. Chapter 1 discusses key aspects of the standard model, paying close attention to QCD at low-energies and the necessity of effective field theories (EFTs) and LQCD. Chapter 2 reviews the result by Luscher for two bosons with arbitrary momentum. After a detailed derivation of the quantization condition for two bosons below the inelastic threshold, it is straightforward to determine the spectrum of a system with arbitrary number of channels composed of two hadrons with nonzero total momentum. In Section 2.3, Luscher's result is re-derived using the auxilary field formalism, also known as the "dimer formalism". Chapter 3 briefly reviews the complexity of the nuclear sector, as compared to the scalar sector, and it shown that this rich structure can be recovered by the generalization of the auxilary field formalism for the two nucleon system. Using this formalism, the quantization condition for two non-relativistic nucleons1 in a finite volume is derived. The result presented hold for a two nucleon system with arbitrary partial-waves, spin and parity. Provided are the explicit relations among scattering parameters and their corresponding point group symmetry class eigenenergies with orbital angular momentum l [less than or equal to] 4. Finally, Chapter 4 presents the quantization condition for the spectrum of three identical bosons in a finite volume. Unlike the two-body analogue, the quantization condition of the three-body sector is not algebraic and in general requires numerically solving an integral equation. However, for systems with an attractive two-body force that supports a twobody bound-state, a diboson, and for energies below the diboson breakup, the quantization condition reduces to the well-known Luscher formula with exponential corrections in volume that scale with the diboson binding momentum. To accurately determine infinite volume phase shifts, it is necessary to extrapolate the phase shifts obtained from the Luscher formula for the boson-diboson system to the infinite volume limit. For energies above the breakup threshold, or for systems with no two-body bound-state (with only scattering states and resonances) the Luscher formula gets power-law volume corrections and consequently fails to describe the three-particle system. These corrections are nonperturbatively included in the quantization condition presented.

Lattice QCD for Nuclear Physics

Lattice QCD for Nuclear Physics PDF Author: Huey-Wen Lin
Publisher: Springer
ISBN: 3319080229
Category : Science
Languages : en
Pages : 255

Get Book Here

Book Description
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.

On the Extraction of Observables from Lattice QCD and the First Lattice Calculation of Nuclear Parity Violation

On the Extraction of Observables from Lattice QCD and the First Lattice Calculation of Nuclear Parity Violation PDF Author: Joseph Wasem
Publisher:
ISBN:
Category : Quantum chromodynamics
Languages : en
Pages : 137

Get Book Here

Book Description


Hadronic Physics from Lattice QCD

Hadronic Physics from Lattice QCD PDF Author: Anthony M. Green
Publisher: World Scientific
ISBN: 9812701389
Category : Science
Languages : en
Pages : 385

Get Book Here

Book Description
Particle and nuclear physicists frequently take results from Lattice QCD at their face value without probing into their reliability or sophistication. This attitude usually stems from a lack of knowledge of the field. The aim of the present volume is to rectify this by introducing in an elementary way several topics, which we believe are appropriate for, and of possible interest to, both particle and nuclear physicists who are non-experts in the field.

Nuclear Reactions from Lattice QCD.

Nuclear Reactions from Lattice QCD. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

Testing QCD Through Spin Observables in Nuclear Targets

Testing QCD Through Spin Observables in Nuclear Targets PDF Author: Don G. Crabb
Publisher: World Scientific
ISBN: 9812382739
Category : Science
Languages : en
Pages : 338

Get Book Here

Book Description
This volume contains the invited talks and contributed papers presented at the workshop on ?Testing QCD Through Spin Observables in Nuclear Targets?, held at the University of Virginia in April 2002.The workshop was proposed in the context of the large number of experiments that have used polarized deuterons or polarized 3He to extract information about the spin parameters of the neutron. The motivation for this workshop was to study the effects of the nuclear medium on the spin properties of the bound nucleon and to explore issues in QCD that might be resolved through spin observables in nuclear targets: What is the effect of the nuclear medium on the measured asymmetries? How have the latest results on the spin structure of the nucleon and the nucleon form factors changed our thinking? What advances are anticipated in the development of polarized targets?

Lattice QCD Study for the Relation Between Confinement and Chiral Symmetry Breaking

Lattice QCD Study for the Relation Between Confinement and Chiral Symmetry Breaking PDF Author: Takahiro Doi
Publisher: Springer
ISBN: 9789811349119
Category : Science
Languages : en
Pages : 59

Get Book Here

Book Description
This thesis focuses on an unresolved problem in particle and nuclear physics: the relation between two important non-perturbative phenomena in quantum chromodynamics (QCD) – quark confinement and chiral symmetry breaking. The author develops a new analysis method in the lattice QCD, and derives a number of analytical formulae to express the order parameters for quark confinement, such as the Polyakov loop, its fluctuations, and the Wilson loop in terms of the Dirac eigenmodes closely related to chiral symmetry breaking. Based on the analytical formulae, the author analytically as well as numerically shows that at finite temperatures there is no direct one-to-one correspondence between them. The thesis describes this extraordinary achievement using the first-principle analysis, and proposes a possible new phase in which quarks are confined and chiral symmetry is restored.

Perturbative Renormalization of Proton Observables in Lattice QCD Using Domain Wall Fermions

Perturbative Renormalization of Proton Observables in Lattice QCD Using Domain Wall Fermions PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Deep inelastic scattering unambiguously measures hadron observables characterizing the quark-gluon structure of hadrons. The only way to calculate these observables from first principles is lattice QCD. Experiments measure matrix elements of light cone operators ... where diagonal elements specify the quark density distribution q(x), quark helicity distribution [delta] q(x) and quark transversity distribution [delta] q(x). Off-diagonal elements determine form factors and general parton distributions. Due to the Minkowskian nature of these matrix elements, they cannot be evaluated on a Euclidean lattice so one uses the operator product expansion to calculate matrix elements ... which specify moments of these distributions. In this thesis, renormalization factors have been calculated for local bilinear operators of the form ... in a given irreducible representation of hypercubic group as well as mixing coefficients of those operators for low moments of physical interest. In the past, it was only possible to calculate with quark masses such that ... Now for the first time using Ginsparg-Wilson "Domain Wall" fermions with HYP smearing and full QCD configurations on large lattices make calculations possible in the physical chiral regime.

Connecting Physical Resonant Amplitudes and Lattice QCD.

Connecting Physical Resonant Amplitudes and Lattice QCD. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We present a determination of the isovector, $P$-wave $\pi\pi$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $m_\pi =236$ MeV. The finite volume spectra are described using extensions of L\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $m_\pi= 140$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $\rho$-resonance pole at $E_\rho= \left[755(2)(1)(^{20}_{02})-\frac{i}{2}\,129(3)(1)(^{7}_{1})\right]~{\rm MeV}$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

10th Conference on the Intersections of Particle and Nuclear Physics

10th Conference on the Intersections of Particle and Nuclear Physics PDF Author: Marvin L. Marshak
Publisher: American Institute of Physics
ISBN: 9780735407237
Category : Science
Languages : en
Pages : 1010

Get Book Here

Book Description
CIPANP 2009 explores areas of common interest between nuclear physicists, high energy (particle) physicists and astrophysicists. These areas range from studies of the strong interactions that bind nuclei together to physics of the very early Universe and include such topics as neutrinos, hadron physics, spin physics, heavy ion physics, QCD and heavy flavor physics. The Conference papers include descriptions of searches for "new physics", phenomena that cannot be accounted for by current theories.