Elliptic Problems in Nonsmooth Domains

Elliptic Problems in Nonsmooth Domains PDF Author: Pierre Grisvard
Publisher: SIAM
ISBN: 1611972027
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Originally published: Boston: Pitman Advanced Pub. Program, 1985.

Elliptic Problems in Nonsmooth Domains

Elliptic Problems in Nonsmooth Domains PDF Author: Pierre Grisvard
Publisher: SIAM
ISBN: 1611972027
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Originally published: Boston: Pitman Advanced Pub. Program, 1985.

Elliptic Boundary Value Problems in Domains with Point Singularities

Elliptic Boundary Value Problems in Domains with Point Singularities PDF Author: Vladimir Kozlov
Publisher: American Mathematical Soc.
ISBN: 0821807544
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR

Wave Factorization of Elliptic Symbols: Theory and Applications

Wave Factorization of Elliptic Symbols: Theory and Applications PDF Author: Vladimir B. Vasil'ev
Publisher: Springer Science & Business Media
ISBN: 9780792365310
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
This monograph is devoted to the development of a new approach to studying elliptic differential and integro-differential (pseudodifferential) equations and their boundary problems in non-smooth domains. This approach is based on a special representation of symbols of elliptic operators called wave factorization. In canonical domains, for example, the angle on a plane or a wedge in space, this yields a general solution, and then leads to the statement of a boundary problem. Wave factorization has also been used to obtain explicit formulas for solving some problems in diffraction and elasticity theory. Audience: This volume will be of interest to mathematicians, engineers, and physicists whose work involves partial differential equations, integral equations, operator theory, elasticity and viscoelasticity, and electromagnetic theory. It can also be recommended as a text for graduate and postgraduate students for courses in singular integral and pseudodifferential equations.

Non-Homogeneous Boundary Value Problems and Applications

Non-Homogeneous Boundary Value Problems and Applications PDF Author: Jacques Louis Lions
Publisher: Springer Science & Business Media
ISBN: 3642651615
Category : Mathematics
Languages : en
Pages : 375

Get Book Here

Book Description
1. We describe, at first in a very formaI manner, our essential aim. n Let m be an op en subset of R , with boundary am. In m and on am we introduce, respectively, linear differential operators P and Qj' 0 ~ i ~ 'V. By "non-homogeneous boundary value problem" we mean a problem of the following type: let f and gj' 0 ~ i ~ 'v, be given in function space s F and G , F being a space" on m" and the G/ s spaces" on am" ; j we seek u in a function space u/t "on m" satisfying (1) Pu = f in m, (2) Qju = gj on am, 0 ~ i ~ 'v«])). Qj may be identically zero on part of am, so that the number of boundary conditions may depend on the part of am considered 2. We take as "working hypothesis" that, for fEF and gjEG , j the problem (1), (2) admits a unique solution u E U/t, which depends 3 continuously on the data . But for alllinear probIems, there is a large number of choiees for the space s u/t and {F; G} (naturally linke d together). j Generally speaking, our aim is to determine families of spaces 'ft and {F; G}, associated in a "natural" way with problem (1), (2) and con j venient for applications, and also all possible choiees for u/t and {F; G} j in these families.

Polyharmonic Boundary Value Problems

Polyharmonic Boundary Value Problems PDF Author: Filippo Gazzola
Publisher: Springer
ISBN: 3642122450
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
This accessible monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. It provides rapid access to recent results and references.

Elliptic Problems in Nonsmooth Domains

Elliptic Problems in Nonsmooth Domains PDF Author: Pierre Grisvard
Publisher: SIAM
ISBN: 9781611972030
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
This classic text focuses on elliptic boundary value problems in domains with nonsmooth boundaries and on problems with mixed boundary conditions. Its contents are essential for an understanding of the behavior of numerical methods for partial differential equations (PDEs) on two-dimensional domains with corners. Elliptic problems in nonsmooth domains: provides a careful and self-contained development of Sobolev spaces on nonsmooth domains, develops a comprehensive theory for second-order elliptic boundary value problems, and addresses fourth-order boundary value problems and numerical treatment of singularities.

Analysis, Partial Differential Equations and Applications

Analysis, Partial Differential Equations and Applications PDF Author: Alberto Cialdea
Publisher: Springer Science & Business Media
ISBN: 3764398981
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications", held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrödinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya.

The Laplace Equation

The Laplace Equation PDF Author: Dagmar Medková
Publisher: Springer
ISBN: 3319743074
Category : Mathematics
Languages : en
Pages : 669

Get Book Here

Book Description
This book is devoted to boundary value problems of the Laplace equation on bounded and unbounded Lipschitz domains. It studies the Dirichlet problem, the Neumann problem, the Robin problem, the derivative oblique problem, the transmission problem, the skip problem and mixed problems. It also examines different solutions - classical, in Sobolev spaces, in Besov spaces, in homogeneous Sobolev spaces and in the sense of non-tangential limit. It also explains relations between different solutions. The book has been written in a way that makes it as readable as possible for a wide mathematical audience, and includes all the fundamental definitions and propositions from other fields of mathematics. This book is of interest to research students, as well as experts in partial differential equations and numerical analysis.

Elliptic Problems in Domains with Piecewise Smooth Boundaries

Elliptic Problems in Domains with Piecewise Smooth Boundaries PDF Author: Sergey Nazarov
Publisher: Walter de Gruyter
ISBN: 3110848910
Category : Mathematics
Languages : en
Pages : 537

Get Book Here

Book Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

A Unified Approach to Boundary Value Problems

A Unified Approach to Boundary Value Problems PDF Author: Athanassios S. Fokas
Publisher: SIAM
ISBN: 089871706X
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.