On Sudakov's Type Decomposition of Transference Plans with Norm Costs

On Sudakov's Type Decomposition of Transference Plans with Norm Costs PDF Author: Stefano Bianchini
Publisher: American Mathematical Soc.
ISBN: 1470427664
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description
The authors consider the original strategy proposed by Sudakov for solving the Monge transportation problem with norm cost with , probability measures in and absolutely continuous w.r.t. . The key idea in this approach is to decompose (via disintegration of measures) the Kantorovich optimal transportation problem into a family of transportation problems in , where are disjoint regions such that the construction of an optimal map is simpler than in the original problem, and then to obtain by piecing together the maps . When the norm is strictly convex, the sets are a family of -dimensional segments determined by the Kantorovich potential called optimal rays, while the existence of the map is straightforward provided one can show that the disintegration of (and thus of ) on such segments is absolutely continuous w.r.t. the -dimensional Hausdorff measure. When the norm is not strictly convex, the main problems in this kind of approach are two: first, to identify a suitable family of regions on which the transport problem decomposes into simpler ones, and then to prove the existence of optimal maps. In this paper the authors show how these difficulties can be overcome, and that the original idea of Sudakov can be successfully implemented. The results yield a complete characterization of the Kantorovich optimal transportation problem, whose straightforward corollary is the solution of the Monge problem in each set and then in . The strategy is sufficiently powerful to be applied to other optimal transportation problems.

On Sudakov's Type Decomposition of Transference Plans with Norm Costs

On Sudakov's Type Decomposition of Transference Plans with Norm Costs PDF Author: Stefano Bianchini
Publisher: American Mathematical Soc.
ISBN: 1470427664
Category : Mathematics
Languages : en
Pages : 124

Get Book Here

Book Description
The authors consider the original strategy proposed by Sudakov for solving the Monge transportation problem with norm cost with , probability measures in and absolutely continuous w.r.t. . The key idea in this approach is to decompose (via disintegration of measures) the Kantorovich optimal transportation problem into a family of transportation problems in , where are disjoint regions such that the construction of an optimal map is simpler than in the original problem, and then to obtain by piecing together the maps . When the norm is strictly convex, the sets are a family of -dimensional segments determined by the Kantorovich potential called optimal rays, while the existence of the map is straightforward provided one can show that the disintegration of (and thus of ) on such segments is absolutely continuous w.r.t. the -dimensional Hausdorff measure. When the norm is not strictly convex, the main problems in this kind of approach are two: first, to identify a suitable family of regions on which the transport problem decomposes into simpler ones, and then to prove the existence of optimal maps. In this paper the authors show how these difficulties can be overcome, and that the original idea of Sudakov can be successfully implemented. The results yield a complete characterization of the Kantorovich optimal transportation problem, whose straightforward corollary is the solution of the Monge problem in each set and then in . The strategy is sufficiently powerful to be applied to other optimal transportation problems.

On Non-Generic Finite Subgroups of Exceptional Algebraic Groups

On Non-Generic Finite Subgroups of Exceptional Algebraic Groups PDF Author: Alastair J. Litterick
Publisher: American Mathematical Soc.
ISBN: 1470428377
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
The study of finite subgroups of a simple algebraic group $G$ reduces in a sense to those which are almost simple. If an almost simple subgroup of $G$ has a socle which is not isomorphic to a group of Lie type in the underlying characteristic of $G$, then the subgroup is called non-generic. This paper considers non-generic subgroups of simple algebraic groups of exceptional type in arbitrary characteristic.

Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds

Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds PDF Author: Chin-Yu Hsiao
Publisher: American Mathematical Soc.
ISBN: 1470441012
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n−1, n⩾2, and let Lk be the k-th tensor power of a CR complex line bundle L over X. Given q∈{0,1,…,n−1}, let □(q)b,k be the Gaffney extension of Kohn Laplacian for (0,q) forms with values in Lk. For λ≥0, let Π(q)k,≤λ:=E((−∞,λ]), where E denotes the spectral measure of □(q)b,k. In this work, the author proves that Π(q)k,≤k−N0F∗k, FkΠ(q)k,≤k−N0F∗k, N0≥1, admit asymptotic expansions with respect to k on the non-degenerate part of the characteristic manifold of □(q)b,k, where Fk is some kind of microlocal cut-off function. Moreover, we show that FkΠ(q)k,≤0F∗k admits a full asymptotic expansion with respect to k if □(q)b,k has small spectral gap property with respect to Fk and Π(q)k,≤0 is k-negligible away the diagonal with respect to Fk. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR S1 action.

Holomorphic Automorphic Forms and Cohomology

Holomorphic Automorphic Forms and Cohomology PDF Author: Roelof Bruggeman
Publisher: American Mathematical Soc.
ISBN: 1470428555
Category : Mathematics
Languages : en
Pages : 182

Get Book Here

Book Description


Elliptic PDEs on Compact Ricci Limit Spaces and Applications

Elliptic PDEs on Compact Ricci Limit Spaces and Applications PDF Author: Shouhei Honda
Publisher: American Mathematical Soc.
ISBN: 1470428547
Category : Mathematics
Languages : en
Pages : 104

Get Book Here

Book Description
In this paper the author studies elliptic PDEs on compact Gromov-Hausdorff limit spaces of Riemannian manifolds with lower Ricci curvature bounds. In particular the author establishes continuities of geometric quantities, which include solutions of Poisson's equations, eigenvalues of Schrödinger operators, generalized Yamabe constants and eigenvalues of the Hodge Laplacian, with respect to the Gromov-Hausdorff topology. The author applies these to the study of second-order differential calculus on such limit spaces.

Mathematical Study of Degenerate Boundary Layers: A Large Scale Ocean Circulation Problem

Mathematical Study of Degenerate Boundary Layers: A Large Scale Ocean Circulation Problem PDF Author: Anne-Laure Dalibard
Publisher: American Mathematical Soc.
ISBN: 1470428350
Category : Mathematics
Languages : en
Pages : 118

Get Book Here

Book Description
This paper is concerned with a complete asymptotic analysis as $E \to 0$ of the Munk equation $\partial _x\psi -E \Delta ^2 \psi = \tau $ in a domain $\Omega \subset \mathbf R^2$, supplemented with boundary conditions for $\psi $ and $\partial _n \psi $. This equation is a simple model for the circulation of currents in closed basins, the variables $x$ and $y$ being respectively the longitude and the latitude. A crude analysis shows that as $E \to 0$, the weak limit of $\psi $ satisfies the so-called Sverdrup transport equation inside the domain, namely $\partial _x \psi ^0=\tau $, while boundary layers appear in the vicinity of the boundary.

Globally Generated Vector Bundles with Small $c_1$ on Projective Spaces

Globally Generated Vector Bundles with Small $c_1$ on Projective Spaces PDF Author: Cristian Anghel
Publisher: American Mathematical Soc.
ISBN: 1470428385
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
The authors provide a complete classification of globally generated vector bundles with first Chern class $c_1 \leq 5$ one the projective plane and with $c_1 \leq 4$ on the projective $n$-space for $n \geq 3$. This reproves and extends, in a systematic manner, previous results obtained for $c_1 \leq 2$ by Sierra and Ugaglia [J. Pure Appl. Algebra 213 (2009), 2141-2146], and for $c_1 = 3$ by Anghel and Manolache [Math. Nachr. 286 (2013), 1407-1423] and, independently, by Sierra and Ugaglia [J. Pure Appl. Algebra 218 (2014), 174-180]. It turns out that the case $c_1 = 4$ is much more involved than the previous cases, especially on the projective 3-space. Among the bundles appearing in our classification one can find the Sasakura rank 3 vector bundle on the projective 4-space (conveniently twisted). The authors also propose a conjecture concerning the classification of globally generated vector bundles with $c_1 \leq n - 1$ on the projective $n$-space. They verify the conjecture for $n \leq 5$.

From Vertex Operator Algebras to Conformal Nets and Back

From Vertex Operator Algebras to Conformal Nets and Back PDF Author: Sebastiano Carpi
Publisher: American Mathematical Soc.
ISBN: 147042858X
Category : Mathematics
Languages : en
Pages : 97

Get Book Here

Book Description
The authors consider unitary simple vertex operator algebras whose vertex operators satisfy certain energy bounds and a strong form of locality and call them strongly local. They present a general procedure which associates to every strongly local vertex operator algebra V a conformal net AV acting on the Hilbert space completion of V and prove that the isomorphism class of AV does not depend on the choice of the scalar product on V. They show that the class of strongly local vertex operator algebras is closed under taking tensor products and unitary subalgebras and that, for every strongly local vertex operator algebra V, the map W↦AW gives a one-to-one correspondence between the unitary subalgebras W of V and the covariant subnets of AV.

Neckpinch Dynamics for Asymmetric Surfaces Evolving by Mean Curvature Flow

Neckpinch Dynamics for Asymmetric Surfaces Evolving by Mean Curvature Flow PDF Author: Zhou Gang
Publisher: American Mathematical Soc.
ISBN: 1470428407
Category : Mathematics
Languages : en
Pages : 90

Get Book Here

Book Description
The authors study noncompact surfaces evolving by mean curvature flow (mcf). For an open set of initial data that are $C^3$-close to round, but without assuming rotational symmetry or positive mean curvature, the authors show that mcf solutions become singular in finite time by forming neckpinches, and they obtain detailed asymptotics of that singularity formation. The results show in a precise way that mcf solutions become asymptotically rotationally symmetric near a neckpinch singularity.

Degree Spectra of Relations on a Cone

Degree Spectra of Relations on a Cone PDF Author: Matthew Harrison-Trainor
Publisher: American Mathematical Soc.
ISBN: 1470428393
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
Let $\mathcal A$ be a mathematical structure with an additional relation $R$. The author is interested in the degree spectrum of $R$, either among computable copies of $\mathcal A$ when $(\mathcal A,R)$ is a ``natural'' structure, or (to make this rigorous) among copies of $(\mathcal A,R)$ computable in a large degree d. He introduces the partial order of degree spectra on a cone and begin the study of these objects. Using a result of Harizanov--that, assuming an effectiveness condition on $\mathcal A$ and $R$, if $R$ is not intrinsically computable, then its degree spectrum contains all c.e. degrees--the author shows that there is a minimal non-trivial degree spectrum on a cone, consisting of the c.e. degrees.