On Some Aspects of Oscillation Theory and Geometry

On Some Aspects of Oscillation Theory and Geometry PDF Author: Bruno Bianchini
Publisher: American Mathematical Soc.
ISBN: 0821887998
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
The aim of this paper is to analyze some of the relationships between oscillation theory for linear ordinary differential equations on the real line (shortly, ODE) and the geometry of complete Riemannian manifolds. With this motivation the authors prove some new results in both directions, ranging from oscillation and nonoscillation conditions for ODE's that improve on classical criteria, to estimates in the spectral theory of some geometric differential operator on Riemannian manifolds with related topological and geometric applications. To keep their investigation basically self-contained, the authors also collect some, more or less known, material which often appears in the literature in various forms and for which they give, in some instances, new proofs according to their specific point of view.

On Some Aspects of Oscillation Theory and Geometry

On Some Aspects of Oscillation Theory and Geometry PDF Author: Bruno Bianchini
Publisher: American Mathematical Soc.
ISBN: 0821887998
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
The aim of this paper is to analyze some of the relationships between oscillation theory for linear ordinary differential equations on the real line (shortly, ODE) and the geometry of complete Riemannian manifolds. With this motivation the authors prove some new results in both directions, ranging from oscillation and nonoscillation conditions for ODE's that improve on classical criteria, to estimates in the spectral theory of some geometric differential operator on Riemannian manifolds with related topological and geometric applications. To keep their investigation basically self-contained, the authors also collect some, more or less known, material which often appears in the literature in various forms and for which they give, in some instances, new proofs according to their specific point of view.

Maximum Principles and Geometric Applications

Maximum Principles and Geometric Applications PDF Author: Luis J. Alías
Publisher: Springer
ISBN: 3319243373
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.

Topics in Modern Differential Geometry

Topics in Modern Differential Geometry PDF Author: Stefan Haesen
Publisher: Springer
ISBN: 9462392404
Category : Mathematics
Languages : en
Pages : 289

Get Book Here

Book Description
A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.

Generalized Descriptive Set Theory and Classification Theory

Generalized Descriptive Set Theory and Classification Theory PDF Author: Sy-David Friedman
Publisher: American Mathematical Soc.
ISBN: 0821894757
Category : Mathematics
Languages : en
Pages : 92

Get Book Here

Book Description
Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper the authors study the generalization where countable is replaced by uncountable. They explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. They also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. The authors' results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.

On Some Aspects of Oscillation Theory and Geometry

On Some Aspects of Oscillation Theory and Geometry PDF Author: Bruno Bianchini
Publisher:
ISBN: 9781470410568
Category : MATHEMATICS
Languages : en
Pages : 208

Get Book Here

Book Description
"The aim of this paper is to analyze some of the relationships between oscillation theory for linear ordinary differential equations on the real line (shortly, ODE) and the geometry of complete Riemannian manifolds. With this motivation we prove some new results in both directions, ranging from oscillation and nonoscillation conditions for ODE's that improve on classical criteria, to estimates in the spectral theory of some geometric differential operator on Riemannian manifolds with related topological and geometric applications. To keep our investigation basically self-contained we also collect some, more or less known, material which often appears in the literature in various forms and for which we give, in some instances, new proofs according to our specific point of view."--Page v.

Effective Hamiltonians for Constrained Quantum Systems

Effective Hamiltonians for Constrained Quantum Systems PDF Author: Jakob Wachsmuth
Publisher: American Mathematical Soc.
ISBN: 0821894897
Category : Mathematics
Languages : en
Pages : 96

Get Book Here

Book Description
The authors consider the time-dependent Schrödinger equation on a Riemannian manifold with a potential that localizes a certain subspace of states close to a fixed submanifold . When the authors scale the potential in the directions normal to by a parameter , the solutions concentrate in an -neighborhood of . This situation occurs for example in quantum wave guides and for the motion of nuclei in electronic potential surfaces in quantum molecular dynamics. The authors derive an effective Schrödinger equation on the submanifold and show that its solutions, suitably lifted to , approximate the solutions of the original equation on up to errors of order at time . Furthermore, the authors prove that the eigenvalues of the corresponding effective Hamiltonian below a certain energy coincide up to errors of order with those of the full Hamiltonian under reasonable conditions.

Global and Local Regularity of Fourier Integral Operators on Weighted and Unweighted Spaces

Global and Local Regularity of Fourier Integral Operators on Weighted and Unweighted Spaces PDF Author: David Dos Santos Ferreira
Publisher: American Mathematical Soc.
ISBN: 0821891197
Category : Mathematics
Languages : en
Pages : 86

Get Book Here

Book Description
The authors investigate the global continuity on spaces with of Fourier integral operators with smooth and rough amplitudes and/or phase functions subject to certain necessary non-degeneracy conditions. In this context they prove the optimal global boundedness result for Fourier integral operators with non-degenerate phase functions and the most general smooth Hörmander class amplitudes i.e. those in with . They also prove the very first results concerning the continuity of smooth and rough Fourier integral operators on weighted spaces, with and (i.e. the Muckenhoupt weights) for operators with rough and smooth amplitudes and phase functions satisfying a suitable rank condition.

Recent Trends in Nonlinear Partial Differential Equations I

Recent Trends in Nonlinear Partial Differential Equations I PDF Author: James B. Serrin
Publisher: American Mathematical Soc.
ISBN: 082188736X
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
This book is the first of two volumes which contain the proceedings of the Workshop on Nonlinear Partial Differential Equations, held from May 28-June 1, 2012, at the University of Perugia in honor of Patrizia Pucci's 60th birthday. The workshop brought t

Geometric Analysis of Quasilinear Inequalities on Complete Manifolds

Geometric Analysis of Quasilinear Inequalities on Complete Manifolds PDF Author: Bruno Bianchini
Publisher: Springer Nature
ISBN: 3030627047
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
This book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improvements.

On the Spectra of Quantum Groups

On the Spectra of Quantum Groups PDF Author: Milen Yakimov
Publisher: American Mathematical Soc.
ISBN: 082189174X
Category : Mathematics
Languages : en
Pages : 104

Get Book Here

Book Description
Joseph and Hodges-Levasseur (in the A case) described the spectra of all quantum function algebras on simple algebraic groups in terms of the centers of certain localizations of quotients of by torus invariant prime ideals, or equivalently in terms of orbits of finite groups. These centers were only known up to finite extensions. The author determines the centers explicitly under the general conditions that the deformation parameter is not a root of unity and without any restriction on the characteristic of the ground field. From it he deduces a more explicit description of all prime ideals of than the previously known ones and an explicit parametrization of .