Numerical Solution of Sturm-Liouville Problems

Numerical Solution of Sturm-Liouville Problems PDF Author: John Derwent Pryce
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Sturm-Liouville problems (SLPs)--an applied mathematics tool developed in the nineteenth century and a driving force of pure mathematics in the early twentieth century--became of vital interest to physicists with the advent of Schrodinger's equations. Today's fascinating variety of SL-related computations reflects this diverse historical background. This book was written for scientists and engineers who desire an introduction to simple SLPs, their limitations, the algorithms that overcome these limitations, and available software. Numerical analysts seeking a reference on good SLP methods, theory, implementation, and performance will also want to own a copy of this book. Treatments of the underlying mathematical theories and numerous helpful problems round out this superb new volume.

Numerical Solution of Sturm-Liouville Problems

Numerical Solution of Sturm-Liouville Problems PDF Author: John Derwent Pryce
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Sturm-Liouville problems (SLPs)--an applied mathematics tool developed in the nineteenth century and a driving force of pure mathematics in the early twentieth century--became of vital interest to physicists with the advent of Schrodinger's equations. Today's fascinating variety of SL-related computations reflects this diverse historical background. This book was written for scientists and engineers who desire an introduction to simple SLPs, their limitations, the algorithms that overcome these limitations, and available software. Numerical analysts seeking a reference on good SLP methods, theory, implementation, and performance will also want to own a copy of this book. Treatments of the underlying mathematical theories and numerous helpful problems round out this superb new volume.

Direct and Inverse Sturm-Liouville Problems

Direct and Inverse Sturm-Liouville Problems PDF Author: Vladislav V. Kravchenko
Publisher: Birkhäuser
ISBN: 9783030478483
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
This book provides an introduction to the most recent developments in the theory and practice of direct and inverse Sturm-Liouville problems on finite and infinite intervals. A universal approach for practical solving of direct and inverse spectral and scattering problems is presented, based on the notion of transmutation (transformation) operators and their efficient construction. Analytical representations for solutions of Sturm-Liouville equations as well as for the integral kernels of the transmutation operators are derived in the form of functional series revealing interesting special features and lending themselves to direct and simple numerical solution of a wide variety of problems. The book is written for undergraduate and graduate students, as well as for mathematicians, physicists and engineers interested in direct and inverse spectral problems.

Elementary Differential Equations with Boundary Value Problems

Elementary Differential Equations with Boundary Value Problems PDF Author: William F. Trench
Publisher: Thomson Brooks/Cole
ISBN:
Category : Mathematics
Languages : en
Pages : 764

Get Book Here

Book Description
Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.

Sturm-Liouville Theory and its Applications

Sturm-Liouville Theory and its Applications PDF Author: Mohammed Al-Gwaiz
Publisher: Springer Science & Business Media
ISBN: 1846289718
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
Developed from a course taught to senior undergraduates, this book provides a unified introduction to Fourier analysis and special functions based on the Sturm-Liouville theory in L2. The text’s presentation follows a clear, rigorous mathematical style that is highly readable. The author first establishes the basic results of Sturm-Liouville theory and then provides examples and applications to illustrate the theory. The final two chapters, on Fourier and Laplace transformations, demonstrate the use of the Fourier series method for representing functions to integral representations.

Sturm-Liouville Theory

Sturm-Liouville Theory PDF Author: Werner O. Amrein
Publisher: Springer Science & Business Media
ISBN: 3764373598
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
This is a collection of survey articles based on lectures presented at a colloquium and workshop in Geneva in 2003 to commemorate the 200th anniversary of the birth of Charles François Sturm. It aims at giving an overview of the development of Sturm-Liouville theory from its historical roots to present day research. It is the first time that such a comprehensive survey has been made available in compact form. The contributions come from internationally renowned experts and cover a wide range of developments of the theory. The book can therefore serve both as an introduction to Sturm-Liouville theory and as background for ongoing research. The volume is addressed to researchers in related areas, to advanced students and to those interested in the historical development of mathematics. The book will also be of interest to those involved in applications of the theory to diverse areas such as engineering, fluid dynamics and computational spectral analysis.

Inverse Sturm-Liouville Problems

Inverse Sturm-Liouville Problems PDF Author: Boris Moiseevič Levitan
Publisher: VSP
ISBN: 9789067640558
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
The interest in inverse problems of spectral analysis has increased considerably in recent years due to the applications to important non-linear equations in mathematical physics. This monograph is devoted to the detailed theory of inverse problems and methods of their solution for the Sturm-Liouville case. Chapters 1--6 contain proofs which are, in many cases, very different from those known earlier. Chapters 4--6 are devoted to inverse problems of quantum scattering theory with attention being focused on physical applications. Chapters 7--11 are based on the author's recent research on the theory of finite- and infinite-zone potentials. A chapter discussing the applications to the Korteweg--de Vries problem is also included. This monograph is important reading for all researchers in the field of mathematics and physics.

Spectral Theory & Computational Methods of Sturm-Liouville Problems

Spectral Theory & Computational Methods of Sturm-Liouville Problems PDF Author: Don Hinton
Publisher: CRC Press
ISBN: 9780824700300
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
Presenting the proceedings of the conference on Sturm-Liouville problems held in conjunction with the 26th Barrett Memorial Lecture Series at the University of Tennessee, Knoxville, this text covers both qualitative and computational theory of Sturm-Liouville problems. It surveys questions in the field as well as describing applications and concepts.

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations PDF Author: Zhilin Li
Publisher: Cambridge University Press
ISBN: 1107163226
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.

Notes on Diffy Qs

Notes on Diffy Qs PDF Author: Jiri Lebl
Publisher:
ISBN: 9781706230236
Category :
Languages : en
Pages : 468

Get Book Here

Book Description
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.

Introduction To The Fractional Calculus Of Variations

Introduction To The Fractional Calculus Of Variations PDF Author: Delfim F M Torres
Publisher: World Scientific Publishing Company
ISBN: 184816968X
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
This invaluable book provides a broad introduction to the fascinating and beautiful subject of Fractional Calculus of Variations (FCV). In 1996, FVC evolved in order to better describe non-conservative systems in mechanics. The inclusion of non-conservatism is extremely important from the point of view of applications. Forces that do not store energy are always present in real systems. They remove energy from the systems and, as a consequence, Noether's conservation laws cease to be valid. However, it is still possible to obtain the validity of Noether's principle using FCV. The new theory provides a more realistic approach to physics, allowing us to consider non-conservative systems in a natural way. The authors prove the necessary Euler-Lagrange conditions and corresponding Noether theorems for several types of fractional variational problems, with and without constraints, using Lagrangian and Hamiltonian formalisms. Sufficient optimality conditions are also obtained under convexity, and Leitmann's direct method is discussed within the framework of FCV.The book is self-contained and unified in presentation. It may be used as an advanced textbook by graduate students and ambitious undergraduates in mathematics and mechanics. It provides an opportunity for an introduction to FCV for experienced researchers. The explanations in the book are detailed, in order to capture the interest of the curious reader, and the book provides the necessary background material required to go further into the subject and explore the rich research literature./a