Introduction to the Numerical Solution of Markov Chains

Introduction to the Numerical Solution of Markov Chains PDF Author: William J. Stewart
Publisher: Princeton University Press
ISBN: 0691036993
Category : Mathematics
Languages : en
Pages : 561

Get Book Here

Book Description
Markov Chains -- Direct Methods -- Iterative Methods -- Projection Methods -- Block Hessenberg Matrices -- Decompositional Methods -- LI-Cyclic Markov -- Chains -- Transient Solutions -- Stochastic Automata Networks -- Software.

Introduction to the Numerical Solution of Markov Chains

Introduction to the Numerical Solution of Markov Chains PDF Author: William J. Stewart
Publisher: Princeton University Press
ISBN: 0691036993
Category : Mathematics
Languages : en
Pages : 561

Get Book Here

Book Description
Markov Chains -- Direct Methods -- Iterative Methods -- Projection Methods -- Block Hessenberg Matrices -- Decompositional Methods -- LI-Cyclic Markov -- Chains -- Transient Solutions -- Stochastic Automata Networks -- Software.

Numerical Methods for Structured Markov Chains

Numerical Methods for Structured Markov Chains PDF Author: Dario A. Bini
Publisher: OUP Oxford
ISBN: 9780198527688
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Intersecting two large research areas - numerical analysis and applied probability/queuing theory - this book is a self-contained introduction to the numerical solution of structured Markov chains, which have a wide applicability in queuing theory and stochastic modeling and include M/G/1 and GI/M/1-type Markov chain, quasi-birth-death processes, non-skip free queues and tree-like stochastic processes. Written for applied probabilists and numerical analysts, but accessible toengineers and scientists working on telecommunications and evaluation of computer systems performances, it provides a systematic treatment of the theory and algorithms for important families of structured Markov chains and a thorough overview of the current literature.The book, consisting of nine Chapters, is presented in three parts. Part 1 covers a basic description of the fundamental concepts related to Markov chains, a systematic treatment of the structure matrix tools, including finite Toeplitz matrices, displacement operators, FFT, and the infinite block Toeplitz matrices, their relationship with matrix power series and the fundamental problems of solving matrix equations and computing canonical factorizations. Part 2 deals with the description andanalysis of structure Markov chains and includes M/G/1, quasi-birth-death processes, non-skip-free queues and tree-like processes. Part 3 covers solution algorithms where new convergence and applicability results are proved. Each chapter ends with bibliographic notes for further reading, and the bookends with an appendix collecting the main general concepts and results used in the book, a list of the main annotations and algorithms used in the book, and an extensive index.

Introduction to the Numerical Solution of Markov Chains

Introduction to the Numerical Solution of Markov Chains PDF Author: William J. Stewart
Publisher: Princeton University Press
ISBN: 0691223386
Category : Mathematics
Languages : en
Pages : 561

Get Book Here

Book Description
A cornerstone of applied probability, Markov chains can be used to help model how plants grow, chemicals react, and atoms diffuse--and applications are increasingly being found in such areas as engineering, computer science, economics, and education. To apply the techniques to real problems, however, it is necessary to understand how Markov chains can be solved numerically. In this book, the first to offer a systematic and detailed treatment of the numerical solution of Markov chains, William Stewart provides scientists on many levels with the power to put this theory to use in the actual world, where it has applications in areas as diverse as engineering, economics, and education. His efforts make for essential reading in a rapidly growing field. Here Stewart explores all aspects of numerically computing solutions of Markov chains, especially when the state is huge. He provides extensive background to both discrete-time and continuous-time Markov chains and examines many different numerical computing methods--direct, single-and multi-vector iterative, and projection methods. More specifically, he considers recursive methods often used when the structure of the Markov chain is upper Hessenberg, iterative aggregation/disaggregation methods that are particularly appropriate when it is NCD (nearly completely decomposable), and reduced schemes for cases in which the chain is periodic. There are chapters on methods for computing transient solutions, on stochastic automata networks, and, finally, on currently available software. Throughout Stewart draws on numerous examples and comparisons among the methods he so thoroughly explains.

Numerical Solution of Markov Chains

Numerical Solution of Markov Chains PDF Author: William J. Stewart
Publisher: CRC Press
ISBN: 9780824784058
Category : Mathematics
Languages : en
Pages : 738

Get Book Here

Book Description
Papers presented at a workshop held January 1990 (location unspecified) cover just about all aspects of solving Markov models numerically. There are papers on matrix generation techniques and generalized stochastic Petri nets; the computation of stationary distributions, including aggregation/disagg

Numerical Methods for Stochastic Control Problems in Continuous Time

Numerical Methods for Stochastic Control Problems in Continuous Time PDF Author: Harold Kushner
Publisher: Springer Science & Business Media
ISBN: 146130007X
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.

Numerical Solution of Algebraic Riccati Equations

Numerical Solution of Algebraic Riccati Equations PDF Author: Dario A. Bini
Publisher: SIAM
ISBN: 1611972086
Category : Mathematics
Languages : en
Pages : 261

Get Book Here

Book Description
This treatment of the basic theory of algebraic Riccati equations describes the classical as well as the more advanced algorithms for their solution in a manner that is accessible to both practitioners and scholars. It is the first book in which nonsymmetric algebraic Riccati equations are treated in a clear and systematic way. Some proofs of theoretical results have been simplified and a unified notation has been adopted. Readers will find a unified discussion of doubling algorithms, which are effective in solving algebraic Riccati equations as well as a detailed description of all classical and advanced algorithms for solving algebraic Riccati equations and their MATLAB codes. This will help the reader gain an understanding of the computational issues and provide ready-to-use implementation of the different solution techniques.

Probability, Markov Chains, Queues, and Simulation

Probability, Markov Chains, Queues, and Simulation PDF Author: William J. Stewart
Publisher: Princeton University Press
ISBN: 1400832810
Category : Mathematics
Languages : en
Pages : 777

Get Book Here

Book Description
Probability, Markov Chains, Queues, and Simulation provides a modern and authoritative treatment of the mathematical processes that underlie performance modeling. The detailed explanations of mathematical derivations and numerous illustrative examples make this textbook readily accessible to graduate and advanced undergraduate students taking courses in which stochastic processes play a fundamental role. The textbook is relevant to a wide variety of fields, including computer science, engineering, operations research, statistics, and mathematics. The textbook looks at the fundamentals of probability theory, from the basic concepts of set-based probability, through probability distributions, to bounds, limit theorems, and the laws of large numbers. Discrete and continuous-time Markov chains are analyzed from a theoretical and computational point of view. Topics include the Chapman-Kolmogorov equations; irreducibility; the potential, fundamental, and reachability matrices; random walk problems; reversibility; renewal processes; and the numerical computation of stationary and transient distributions. The M/M/1 queue and its extensions to more general birth-death processes are analyzed in detail, as are queues with phase-type arrival and service processes. The M/G/1 and G/M/1 queues are solved using embedded Markov chains; the busy period, residual service time, and priority scheduling are treated. Open and closed queueing networks are analyzed. The final part of the book addresses the mathematical basis of simulation. Each chapter of the textbook concludes with an extensive set of exercises. An instructor's solution manual, in which all exercises are completely worked out, is also available (to professors only). Numerous examples illuminate the mathematical theories Carefully detailed explanations of mathematical derivations guarantee a valuable pedagogical approach Each chapter concludes with an extensive set of exercises

Markov Chains

Markov Chains PDF Author: Bruno Sericola
Publisher: John Wiley & Sons
ISBN: 1118731530
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest. The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the Kolmogorov equations, the convergence to equilibrium and the passage time distributions to a state and to a subset of states. These results are applied to birth-and-death processes. He then proposes a detailed study of the uniformization technique by means of Banach algebra. This technique is used for the transient analysis of several queuing systems. Contents 1. Discrete-Time Markov Chains 2. Continuous-Time Markov Chains 3. Birth-and-Death Processes 4. Uniformization 5. Queues About the Authors Bruno Sericola is a Senior Research Scientist at Inria Rennes – Bretagne Atlantique in France. His main research activity is in performance evaluation of computer and communication systems, dependability analysis of fault-tolerant systems and stochastic models.

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations PDF Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666

Get Book Here

Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Computational Probability

Computational Probability PDF Author: Winfried K. Grassmann
Publisher: Springer Science & Business Media
ISBN: 9780792386179
Category : Business & Economics
Languages : en
Pages : 514

Get Book Here

Book Description
Great advances have been made in recent years in the field of computational probability. In particular, the state of the art - as it relates to queuing systems, stochastic Petri-nets and systems dealing with reliability - has benefited significantly from these advances. The objective of this book is to make these topics accessible to researchers, graduate students, and practitioners. Great care was taken to make the exposition as clear as possible. Every line in the book has been evaluated, and changes have been made whenever it was felt that the initial exposition was not clear enough for the intended readership. The work of major research scholars in this field comprises the individual chapters of Computational Probability. The first chapter describes, in nonmathematical terms, the challenges in computational probability. Chapter 2 describes the methodologies available for obtaining the transition matrices for Markov chains, with particular emphasis on stochastic Petri-nets. Chapter 3 discusses how to find transient probabilities and transient rewards for these Markov chains. The next two chapters indicate how to find steady-state probabilities for Markov chains with a finite number of states. Both direct and iterative methods are described in Chapter 4. Details of these methods are given in Chapter 5. Chapters 6 and 7 deal with infinite-state Markov chains, which occur frequently in queueing, because there are times one does not want to set a bound for all queues. Chapter 8 deals with transforms, in particular Laplace transforms. The work of Ward Whitt and his collaborators, who have recently developed a number of numerical methods for Laplace transform inversions, is emphasized in this chapter. Finally, if one wants to optimize a system, one way to do the optimization is through Markov decision making, described in Chapter 9. Markov modeling has found applications in many areas, three of which are described in detail: Chapter 10 analyzes discrete-time queues, Chapter 11 describes networks of queues, and Chapter 12 deals with reliability theory.