Numerical Simulation of Hot Surface Ignition and Combustion of Fuel Sprays

Numerical Simulation of Hot Surface Ignition and Combustion of Fuel Sprays PDF Author: Danyal Mohaddes Khorassani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Due to their high energy density and ease of transportation, liquid fuels continue to be used in a variety of combustion systems, including in aerospace, automotive and industrial applications. Analysis of the underlying physics of multiphase combustion phenomena, particularly as it pertains to ignition, contributes to improved physical understanding and supports greater system reliability and safety. High-fidelity numerical simulations are particularly effective in supporting improved fundamental understanding, but detailed simulations of practical multiphase combustion configurations are highly computationally costly. The study of accidental ignition of liquid fuels and the development of computationally efficient means of performing physically accurate multiphase combustion simulations are therefore important avenues of scientific inquiry. This dissertation considers the problem of the ignition and combustion of a wall-impinging fuel spray using four complementary approaches. First, to analyze the long-term wall heat flux caused by a wall-stagnating spray flame, a steady, one-dimensional, multi-continuum formulation is developed with consideration given to conjugate heat transfer effects. Second, an unsteady, one-dimensional, multi-continuum formulation is developed and a broad parametric study of the hot surface ignition of wall-stagnating fuel sprays is conducted. Third, high-fidelity three-dimensional large-eddy simulations are performed in an Eulerian-Lagrangian formulation using a finite-rate chemistry model. Fourth, the substantial computational cost of the high-fidelity simulations performed motivates the development of a computationally efficient spray combustion modeling framework. This dissertation extends the Pareto-efficient combustion (PEC) modeling framework to spray combustion through a rigorous analysis of the governing equations. The spray-augmented PEC formulation is applied to the high-fidelity simulation of a wall-stagnating spray flame and to the simulation of a realistic gas turbine combustor to demonstrate improved physical fidelity compared to tabulated chemistry, while reducing computational cost compared to monolithic finite-rate chemistry.

Numerical Simulation of Hot Surface Ignition and Combustion of Fuel Sprays

Numerical Simulation of Hot Surface Ignition and Combustion of Fuel Sprays PDF Author: Danyal Mohaddes Khorassani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Due to their high energy density and ease of transportation, liquid fuels continue to be used in a variety of combustion systems, including in aerospace, automotive and industrial applications. Analysis of the underlying physics of multiphase combustion phenomena, particularly as it pertains to ignition, contributes to improved physical understanding and supports greater system reliability and safety. High-fidelity numerical simulations are particularly effective in supporting improved fundamental understanding, but detailed simulations of practical multiphase combustion configurations are highly computationally costly. The study of accidental ignition of liquid fuels and the development of computationally efficient means of performing physically accurate multiphase combustion simulations are therefore important avenues of scientific inquiry. This dissertation considers the problem of the ignition and combustion of a wall-impinging fuel spray using four complementary approaches. First, to analyze the long-term wall heat flux caused by a wall-stagnating spray flame, a steady, one-dimensional, multi-continuum formulation is developed with consideration given to conjugate heat transfer effects. Second, an unsteady, one-dimensional, multi-continuum formulation is developed and a broad parametric study of the hot surface ignition of wall-stagnating fuel sprays is conducted. Third, high-fidelity three-dimensional large-eddy simulations are performed in an Eulerian-Lagrangian formulation using a finite-rate chemistry model. Fourth, the substantial computational cost of the high-fidelity simulations performed motivates the development of a computationally efficient spray combustion modeling framework. This dissertation extends the Pareto-efficient combustion (PEC) modeling framework to spray combustion through a rigorous analysis of the governing equations. The spray-augmented PEC formulation is applied to the high-fidelity simulation of a wall-stagnating spray flame and to the simulation of a realistic gas turbine combustor to demonstrate improved physical fidelity compared to tabulated chemistry, while reducing computational cost compared to monolithic finite-rate chemistry.

Droplets and Sprays

Droplets and Sprays PDF Author: Saptarshi Basu
Publisher: Springer
ISBN: 9811074496
Category : Technology & Engineering
Languages : en
Pages : 433

Get Book Here

Book Description
This book focuses on droplets and sprays relevant to combustion and propulsion applications. The book includes fundamental studies on the heating, evaporation and combustion of individual droplets and basic mechanisms of spray formation. The contents also extend to the latest analytical, numerical and experimental techniques for investigating the behavior of sprays in devices like combustion engines and gas turbines. In addition, the book explores several emerging areas like interactions between sprays and flames and the dynamic characteristics of spray combustion systems on the fundamental side, as well as the development of novel fuel injectors for specific devices on the application side. Given its breadth of coverage, the book will benefit researchers and professionals alike.

Numerical Simulation of Combustion Wave Initiation in Mono-disperse Fuel Sprays by an Ignition Kernel

Numerical Simulation of Combustion Wave Initiation in Mono-disperse Fuel Sprays by an Ignition Kernel PDF Author: S.-C. Wong
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays

Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays PDF Author: Bart Merci
Publisher: Springer Science & Business Media
ISBN: 3319046780
Category : Technology & Engineering
Languages : en
Pages : 167

Get Book Here

Book Description
This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth chapter deals with evaporation effects in the context of flamelet models. In chapter five, LES simulation results are discussed for variable fuel and mass loading. The final chapter discusses PDF modelling of turbulent spray combustion. In short, the contributions in this book are highly valuable for the research community in this field, providing in-depth insight into some of the many aspects of dilute turbulent spray combustion.

Numerical Simulation of Spray Combustion Using Bio-mass Derived Liquid Fuels

Numerical Simulation of Spray Combustion Using Bio-mass Derived Liquid Fuels PDF Author: D. Rochaya
Publisher:
ISBN:
Category :
Languages : en
Pages : 292

Get Book Here

Book Description


Combustion of Liquid Fuel Sprays

Combustion of Liquid Fuel Sprays PDF Author: Alan Williams
Publisher: Butterworth-Heinemann
ISBN: 1483101584
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
Combustion of Liquid Fuel Sprays outlines the fundamentals of the combustion of sprays in a unified way which may be applied to any technological application. The book begins with a discussion of the general nature of spray combustion, the sources of liquid fuels used in spray combustion, biomass sources of liquid fuels, and the nature and properties of fuel oils. Subsequent chapters focus on the properties of sprays, the atomization of liquid fuels, and the theoretical modeling of the behavior of a spray flame in a combustion chamber. The nature and control of pollutants from spray combustion, the formation of deposits in oil-fired systems, and the combustion of sprays in furnaces and engines are elucidated as well. The text is intended for students undertaking courses or research in fuel, combustion, and energy studies.

Numerical Simulation of Ignition and Transient Combustion in Fuel Vapor Clouds

Numerical Simulation of Ignition and Transient Combustion in Fuel Vapor Clouds PDF Author: Jennifer Wiley
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Numerical Simulation of Spray Combustion Using Bio-mass Derived Liquid Fuels

Numerical Simulation of Spray Combustion Using Bio-mass Derived Liquid Fuels PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The main objective of this work is to create a robust model for two-phase liquid spray combustion flow using vegetable oils, to investigate the flow structure generated by a swirler array with different fuels, and secondly to assess and optimise the capability of the CFD to predict accurately the results obtained experimentally and eventually enhance CFD model development and simulation. Validation is achieved by comparing the numerical results obtained with CFD with the experimental measurements. The purpose of this research is to increase the scientific understanding of the fundamental mechanisms of the spray combustion process using a carbon neutral fuel such as ethanol and biodiesel. In fact, very few numerical simulations of liquid biomass fuels in gas turbine systems are available in the literature. The flames are simulated using the commercial code FLUENT. The combustion/turbulence interaction is modelled using the laminar flamelet approach with detailed chemistry modelled using the OPPDIFF model from CHEMKIN. While the experiments could be carried out only up to 3 atm, the simulations were further extended to a maximum pressure of 10 atm. The FLUENT results were assessed qualitatively and quantitatively between the experimental measurements and the simulation. The cold flow features have been captured by the present simulations with a good degree of accuracy. Effect of air preheating was investigated for the biodiesel, and sensitivity to droplet size and spray angles variation were analysed. Good agreement was obtained for ethanol except in the fuel lean region due to failure of the FLUENT laminar flamelet model to capture local flame extinction while biodiesel simulation resulted in a significant overprediction of the flame temperature especially in the downstream region and satisfactory results further upstream. The results show the importance of setting proper droplet initial conditions, since it will significantly affect the structure of the flame.

Numerical Approaches to Combustion Modeling

Numerical Approaches to Combustion Modeling PDF Author: Elaine S. Oran
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN:
Category : Science
Languages : en
Pages : 886

Get Book Here

Book Description


Coarse Grained Simulation and Turbulent Mixing

Coarse Grained Simulation and Turbulent Mixing PDF Author: Fenando F. Grinstein
Publisher: Cambridge University Press
ISBN: 1107137047
Category : Science
Languages : en
Pages : 481

Get Book Here

Book Description
Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.