Numerical Investigation of the Hydrodynamic Focusing Phenomena in a Microflow Cytometer

Numerical Investigation of the Hydrodynamic Focusing Phenomena in a Microflow Cytometer PDF Author: Samuel Ariekela
Publisher:
ISBN:
Category :
Languages : en
Pages : 60

Get Book Here

Book Description

Numerical Investigation of the Hydrodynamic Focusing Phenomena in a Microflow Cytometer

Numerical Investigation of the Hydrodynamic Focusing Phenomena in a Microflow Cytometer PDF Author: Samuel Ariekela
Publisher:
ISBN:
Category :
Languages : en
Pages : 60

Get Book Here

Book Description


Numerical Investigation of Hydrodynamic Focusing and Coulter Principle in a Microfluidic Device

Numerical Investigation of Hydrodynamic Focusing and Coulter Principle in a Microfluidic Device PDF Author: Muheng Zhang
Publisher:
ISBN:
Category : Particles
Languages : en
Pages : 132

Get Book Here

Book Description
Particle information such as particle size and amount is significant to many fields such as chemical engineering, biological research, medical analysis, and environment detection. Microfluidic Coulter counter is suitable for this task because it can get fast and accurate analysis. However, the fundamental principle and several design strategies details are still needed to be analyzed and modeled in order to improve its performance. This dissertation focused on several challenges from the numerical simulation aspects. First one is the analysis for the hydrodynamic focusing in microfluidic Coulter Counter. In recent years, many microfluidic Coulter Counter designs have utilized a technique termed "hydrodynamic focusing" to control the particle's trajectory. Hydrodynamic focusing uses two sheath flows (low concentration) to squeeze the sample flow (high concentration) so it can concentrate the ion distribution on the region where the designer wants. There are large concentration difference between the sample stream and sheath stream. However, few published papers mentioned the ion concentration distribution under the impacts of hydrodynamic focusing. This is difficult to deal withbecause there are conductivity differences at the interface of the sheath/sample streams and the interface of the sample stream/particle. A very fine grid mesh is needed to capture the ion concentration distribution. Meanwhile the simulation which runs at low Reynolds number requires a rigorously smaller than usual time interval to satisfy the stability condition. Another challenge which this dissertation faced is the particle motion. The key point for particle motion simulation is the grid regeneration since the grid needs to be adaptive with the particle movement. So far many simulation solvers choose to regenerate the whole grid domain after each time step. This strategy takes a huge amount of time. The third challenge is the simulation for the electrical potential by considering the significant conductivity difference between the particle and medium. The numerical simulation process gets unstable when the conductivity distribution is not uniform and becomes worse if there is a sharp conductivity variation in the distribution. A new mathematical difference method is needed to model the potential distribution. In order to overcome these challenges, this dissertation used an "overlap mapping" grid generation method to capture the ion concentration distribution along the interfaces of sheath/sample stream and sample stream/particle. The grid regeneration was only needed for the moving object in order to save computing time. A new center difference method was applied on the electrical potential equation to solve its stability problem. The numerical simulation studied the impacts of hydrodynamic focusing with considering the ion convection-diffusion phenomenon. We found that the fluid viscosity does not play a significant role in the concentration distribution. The max concentration relative error is no more than 2.5% on the peak of the selected cross section. Also, the diffusion phenomenon can dilute the ion concentration focusing ability by hydrodynamic focusing while larger sample/sheath stream flow rates ratio can improve the concentration value. The hydrodynamic focusing can decrease the vertical gap between the particles while increasing their horizontal gap. After that the current signal variation were simulated and it showed that the diffusion phenomenon can decrease the signal sensitivity. For the particle we choose to simulate, the current sensitivity decreases 29% in 2D simulation. Fluid viscosity does not play a significant role in the current signal variation if we choose the Reynolds number between one and ten (The max current variation is 3.6% for the 3d simulation). The electrodes length/position, particle size and particle position also affected the current signal. The numerical simulation approaches and results from this dissertation updated the understanding of hydrodynamic focusing and Coulter Counter principle. Also this dissertation showed the feasibility to study the Coulter counter principle numerically by considering the diffusion phenomenon and particle motion.

The Microflow Cytometer

The Microflow Cytometer PDF Author: Frances S. Ligler
Publisher: CRC Press
ISBN: 9814267686
Category : Science
Languages : en
Pages : 394

Get Book Here

Book Description
This book describes the continuing development of inexpensive, portable flow cytometers through incorporation of microfluidic technologies and small optical components. The underlying microfluidic theories essential for microflow cytometry isdiscussed in detail, as well as advances that are representative of the current state-of-the-art. Design and fabrication strategies for these innovative component technologies will be subsequently presented by numerous research groups leading the field. Integration of the components into functional prototype devices for analysis and manipulation of particles and cells are reviewed. Multiple currently available commercial systems are examined to highlight both strengths and areas for improvement.

The Microflow Cytometer

The Microflow Cytometer PDF Author: Frances S. Ligler
Publisher: Pan Stanford Publishing
ISBN: 9814267414
Category : Medical
Languages : en
Pages : 394

Get Book Here

Book Description
"Great book! Excellent compilation. From history of the very early days of flow cytometers to the latest unique unconventional microflow cytometers. From commercialization philosophy to cutting edge engineering designs. From fluid mechanics to optics to electronic circuit considerations. Well balanced and comprehensive."--Shuichi Takayama University of Michigan, USA.

Handbook of Surface Plasmon Resonance

Handbook of Surface Plasmon Resonance PDF Author: Richard B. M. Schasfoort
Publisher: Royal Society of Chemistry
ISBN: 1782627308
Category : Science
Languages : en
Pages : 555

Get Book Here

Book Description
Surface plasmon resonance (SPR) plays a dominant role in real-time interaction sensing of biomolecular binding events, this book provides a total system description including optics, fluidics and sensor surfaces for a wide researcher audience.

Micro/Nano Devices for Blood Analysis

Micro/Nano Devices for Blood Analysis PDF Author: Rui A. Lima
Publisher: MDPI
ISBN: 3039218247
Category : Technology & Engineering
Languages : en
Pages : 174

Get Book Here

Book Description
The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.

Stress Challenges and Immunity in Space

Stress Challenges and Immunity in Space PDF Author: Alexander Choukèr
Publisher: Springer Nature
ISBN: 3030169960
Category : Medical
Languages : en
Pages : 756

Get Book Here

Book Description
This book explains how stress – either psychological or physical – can activate and/or paralyse human innate or adaptive immunity. Adequate immunity is crucial for maintaining health, both on Earth and in space. During space flight, human physiology is specifically challenged by complex environmental stressors, which are most pronounced during lunar or interplanetary missions. Adopting an interdisciplinary approach, the book identifies the impact of these stressors – the space exposome – on immunity as a result of (dys-)functions of specific cells, organs and organ networks. These conditions (e.g. gravitation changes, radiation, isolation/confinement) affect immunity, but at the same time provide insights that may help to prevent, diagnose and address immune-related health alterations. Written by experts from academia, space agencies and industry, the book is a valuable resource for professionals, researchers and students in the field of medicine, biology and technology. The chapters “The Impact of Everyday Stressors on the Immune System and Health”, “Stress and Radiation Responsiveness” and “Assessment of Radiosensitivity and Biomonitoring of Exposure to Space adiation” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Flow Cytometry and Sorting

Flow Cytometry and Sorting PDF Author: Myron R. Melamed
Publisher: Wiley-Liss
ISBN: 9780471562351
Category : Science
Languages : en
Pages : 836

Get Book Here

Book Description
Revised and updated, this Second Edition of a classic text describes and evaluates--in greater detail--the most recent practical applications of flow cytometry technique to basic cellular biological investigations and clinical research on human neoplasms. Ideal for the experienced researcher as well as the novice, this informative book offers state-of-the-art reviews of all aspects of flow cytometry. New articles highlight investigations of higher plants, the flow cytometry of microorganisms, and measurements of intracellular ionized calcium and membrane potential--illustrating techniques of specimen preparation, measurement and analysis for each. New chapters examine applications of flow cytometry to medical genetics, genetic toxicology, and ultrasensitive analysis of molecules in solution. The Second Edition goes beyond the traditional analysis of DNA histograms with BrdU incorporation and DNA denaturability to identify and analyze the cell cycle more precisely. New or rewritten chapters discuss the importance of flow cytometry for measurements of nucleic acids, chromatin, and DNA and cover the cytometry of sperm and the cytopathic effects of viruses.

Microfluidics for Single-Cell Analysis

Microfluidics for Single-Cell Analysis PDF Author: Jin-Ming Lin
Publisher: Springer Nature
ISBN: 9813297298
Category : Science
Languages : en
Pages : 261

Get Book Here

Book Description
This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor’s laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.

Lab-on-Fiber Technology

Lab-on-Fiber Technology PDF Author: Andrea Cusano
Publisher: Springer
ISBN: 3319069985
Category : Science
Languages : en
Pages : 377

Get Book Here

Book Description
This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the “lab-on-fiber” technology. Inspired by the well-established "lab on-a-chip" concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications. Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate description of the main developments and achievements in the lab-on-fiber technology roadmap, also highlighting the new perspectives and challenges to be faced. This book is essential for scientists interested in the cutting-edge fiber optic technology, but also for graduate students.