Author: Xing Zhou
Publisher: Createspace Independent Publishing Platform
ISBN: 9781544876085
Category :
Languages : en
Pages : 128
Book Description
Remainder does not seem to be a big topic in school math. However, in competition math, it is. Almost every contest at middle school and high school level has remainder related problems. For example, in 2017 AMC 10B, out of total 25 problems, at least 3 are related to this topic: the 14th, 23rd, and 25th. Modular arithmetic is a branch in mathematics which studies remainders and tackles related problems. However, this important subject is not taught in schools. Consequently, many students rely on their intuition when attempting to solve such problems. This is clearly not the best situation. This book aims to provide a complete coverage of this topic at the level which is suitable for middle school and high school students. Contents will include both theoretical knowledge and practical techniques. Therefore, upon completion, students will have a solid skill base to solve related problems in math competitions. More information, including table of contents, pre-assessment etc, can be found at http: //www.mathallstar.org/
Number Theory - Modular Arithmetic
Author: Xing Zhou
Publisher: Createspace Independent Publishing Platform
ISBN: 9781544876085
Category :
Languages : en
Pages : 128
Book Description
Remainder does not seem to be a big topic in school math. However, in competition math, it is. Almost every contest at middle school and high school level has remainder related problems. For example, in 2017 AMC 10B, out of total 25 problems, at least 3 are related to this topic: the 14th, 23rd, and 25th. Modular arithmetic is a branch in mathematics which studies remainders and tackles related problems. However, this important subject is not taught in schools. Consequently, many students rely on their intuition when attempting to solve such problems. This is clearly not the best situation. This book aims to provide a complete coverage of this topic at the level which is suitable for middle school and high school students. Contents will include both theoretical knowledge and practical techniques. Therefore, upon completion, students will have a solid skill base to solve related problems in math competitions. More information, including table of contents, pre-assessment etc, can be found at http: //www.mathallstar.org/
Publisher: Createspace Independent Publishing Platform
ISBN: 9781544876085
Category :
Languages : en
Pages : 128
Book Description
Remainder does not seem to be a big topic in school math. However, in competition math, it is. Almost every contest at middle school and high school level has remainder related problems. For example, in 2017 AMC 10B, out of total 25 problems, at least 3 are related to this topic: the 14th, 23rd, and 25th. Modular arithmetic is a branch in mathematics which studies remainders and tackles related problems. However, this important subject is not taught in schools. Consequently, many students rely on their intuition when attempting to solve such problems. This is clearly not the best situation. This book aims to provide a complete coverage of this topic at the level which is suitable for middle school and high school students. Contents will include both theoretical knowledge and practical techniques. Therefore, upon completion, students will have a solid skill base to solve related problems in math competitions. More information, including table of contents, pre-assessment etc, can be found at http: //www.mathallstar.org/
Modular Functions and Dirichlet Series in Number Theory
Author: Tom M. Apostol
Publisher: Springer Science & Business Media
ISBN: 1461209994
Category : Mathematics
Languages : en
Pages : 218
Book Description
A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.
Publisher: Springer Science & Business Media
ISBN: 1461209994
Category : Mathematics
Languages : en
Pages : 218
Book Description
A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.
A Spiral Workbook for Discrete Mathematics
Author: Harris Kwong
Publisher: Open SUNY Textbooks
ISBN: 9781942341161
Category : Mathematics
Languages : en
Pages : 298
Book Description
A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills.
Publisher: Open SUNY Textbooks
ISBN: 9781942341161
Category : Mathematics
Languages : en
Pages : 298
Book Description
A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills.
Number Theory
Author: Kazuya Kato
Publisher: American Mathematical Soc.
ISBN: 0821820958
Category : Class field theory
Languages : en
Pages : 243
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821820958
Category : Class field theory
Languages : en
Pages : 243
Book Description
Introduction to Number Theory
Author: Anthony Vazzana
Publisher: CRC Press
ISBN: 1584889381
Category : Computers
Languages : en
Pages : 530
Book Description
One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topi
Publisher: CRC Press
ISBN: 1584889381
Category : Computers
Languages : en
Pages : 530
Book Description
One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topi
Discrete Mathematics
Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Programming Bitcoin
Author: Jimmy Song
Publisher: O'Reilly Media
ISBN: 1492031461
Category : Computers
Languages : en
Pages : 322
Book Description
Dive into Bitcoin technology with this hands-on guide from one of the leading teachers on Bitcoin and Bitcoin programming. Author Jimmy Song shows Python programmers and developers how to program a Bitcoin library from scratch. You’ll learn how to work with the basics, including the math, blocks, network, and transactions behind this popular cryptocurrency and its blockchain payment system. By the end of the book, you'll understand how this cryptocurrency works under the hood by coding all the components necessary for a Bitcoin library. Learn how to create transactions, get the data you need from peers, and send transactions over the network. Whether you’re exploring Bitcoin applications for your company or considering a new career path, this practical book will get you started. Parse, validate, and create bitcoin transactions Learn Script, the smart contract language behind Bitcoin Do exercises in each chapter to build a Bitcoin library from scratch Understand how proof-of-work secures the blockchain Program Bitcoin using Python 3 Understand how simplified payment verification and light wallets work Work with public-key cryptography and cryptographic primitives
Publisher: O'Reilly Media
ISBN: 1492031461
Category : Computers
Languages : en
Pages : 322
Book Description
Dive into Bitcoin technology with this hands-on guide from one of the leading teachers on Bitcoin and Bitcoin programming. Author Jimmy Song shows Python programmers and developers how to program a Bitcoin library from scratch. You’ll learn how to work with the basics, including the math, blocks, network, and transactions behind this popular cryptocurrency and its blockchain payment system. By the end of the book, you'll understand how this cryptocurrency works under the hood by coding all the components necessary for a Bitcoin library. Learn how to create transactions, get the data you need from peers, and send transactions over the network. Whether you’re exploring Bitcoin applications for your company or considering a new career path, this practical book will get you started. Parse, validate, and create bitcoin transactions Learn Script, the smart contract language behind Bitcoin Do exercises in each chapter to build a Bitcoin library from scratch Understand how proof-of-work secures the blockchain Program Bitcoin using Python 3 Understand how simplified payment verification and light wallets work Work with public-key cryptography and cryptographic primitives
Number Theory
Author: Kuldeep Singh
Publisher: Oxford University Press
ISBN: 019258605X
Category : Mathematics
Languages : en
Pages : 398
Book Description
Number theory is one of the oldest branches of mathematics that is primarily concerned with positive integers. While it has long been studied for its beauty and elegance as a branch of pure mathematics, it has seen a resurgence in recent years with the advent of the digital world for its modern applications in both computer science and cryptography. Number Theory: Step by Step is an undergraduate-level introduction to number theory that assumes no prior knowledge, but works to gradually increase the reader's confidence and ability to tackle more difficult material. The strength of the text is in its large number of examples and the step-by-step explanation of each topic as it is introduced to help aid understanding the abstract mathematics of number theory. It is compiled in such a way that allows self-study, with explicit solutions to all the set of problems freely available online via the companion website. Punctuating the text are short and engaging historical profiles that add context for the topics covered and provide a dynamic background for the subject matter.
Publisher: Oxford University Press
ISBN: 019258605X
Category : Mathematics
Languages : en
Pages : 398
Book Description
Number theory is one of the oldest branches of mathematics that is primarily concerned with positive integers. While it has long been studied for its beauty and elegance as a branch of pure mathematics, it has seen a resurgence in recent years with the advent of the digital world for its modern applications in both computer science and cryptography. Number Theory: Step by Step is an undergraduate-level introduction to number theory that assumes no prior knowledge, but works to gradually increase the reader's confidence and ability to tackle more difficult material. The strength of the text is in its large number of examples and the step-by-step explanation of each topic as it is introduced to help aid understanding the abstract mathematics of number theory. It is compiled in such a way that allows self-study, with explicit solutions to all the set of problems freely available online via the companion website. Punctuating the text are short and engaging historical profiles that add context for the topics covered and provide a dynamic background for the subject matter.
Disquisitiones Arithmeticae
Author: Carl Friedrich Gauss
Publisher: Springer
ISBN: 1493975609
Category : Mathematics
Languages : en
Pages : 491
Book Description
Carl Friedrich Gauss’s textbook, Disquisitiones arithmeticae, published in 1801 (Latin), remains to this day a true masterpiece of mathematical examination. .
Publisher: Springer
ISBN: 1493975609
Category : Mathematics
Languages : en
Pages : 491
Book Description
Carl Friedrich Gauss’s textbook, Disquisitiones arithmeticae, published in 1801 (Latin), remains to this day a true masterpiece of mathematical examination. .
Modular Forms and Related Topics in Number Theory
Author: B. Ramakrishnan
Publisher: Springer Nature
ISBN: 9811587191
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book collects the papers presented at the Conference on Number Theory, held at the Kerala School of Mathematics, Kozhikode, Kerala, India, from December 10–14, 2018. The conference aimed at bringing the active number theorists and researchers in automorphic forms and allied areas to demonstrate their current research works. This book benefits young research scholars, postdoctoral fellows, and young faculty members working in these areas of research.
Publisher: Springer Nature
ISBN: 9811587191
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book collects the papers presented at the Conference on Number Theory, held at the Kerala School of Mathematics, Kozhikode, Kerala, India, from December 10–14, 2018. The conference aimed at bringing the active number theorists and researchers in automorphic forms and allied areas to demonstrate their current research works. This book benefits young research scholars, postdoctoral fellows, and young faculty members working in these areas of research.