Author: Marius Overholt
Publisher: American Mathematical Soc.
ISBN: 1470417065
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.
A Course in Analytic Number Theory
Author: Marius Overholt
Publisher: American Mathematical Soc.
ISBN: 1470417065
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.
Publisher: American Mathematical Soc.
ISBN: 1470417065
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.
A View from the Top
Author: Alex Iosevich
Publisher: American Mathematical Soc.
ISBN: 0821843974
Category : Mathematics
Languages : en
Pages : 154
Book Description
Based on a capstone course that the author taught to upper division undergraduate students with the goal to explain and visualize the connections between different areas of mathematics and the way different subject matters flow from one another, this book is suitable for those with a basic knowledge of high school mathematics.
Publisher: American Mathematical Soc.
ISBN: 0821843974
Category : Mathematics
Languages : en
Pages : 154
Book Description
Based on a capstone course that the author taught to upper division undergraduate students with the goal to explain and visualize the connections between different areas of mathematics and the way different subject matters flow from one another, this book is suitable for those with a basic knowledge of high school mathematics.
Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis
Author: Hugh L. Montgomery
Publisher: American Mathematical Soc.
ISBN: 0821807374
Category : Mathematics
Languages : en
Pages : 242
Book Description
This volume contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One particularly valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. The book should be a useful resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in number theory.
Publisher: American Mathematical Soc.
ISBN: 0821807374
Category : Mathematics
Languages : en
Pages : 242
Book Description
This volume contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One particularly valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. The book should be a useful resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in number theory.
Applications of Number Theory to Numerical Analysis
Author: L.-K. Hua
Publisher: Springer Science & Business Media
ISBN: 3642678297
Category : Mathematics
Languages : en
Pages : 252
Book Description
Owing to the developments and applications of computer science, ma thematicians began to take a serious interest in the applications of number theory to numerical analysis about twenty years ago. The progress achieved has been both important practically as well as satisfactory from the theoretical view point. It'or example, from the seventeenth century till now, a great deal of effort was made in developing methods for approximating single integrals and there were only a few works on multiple quadrature until the 1950's. But in the past twenty years, a number of new methods have been devised of which the number theoretic method is an effective one. The number theoretic method may be described as follows. We use num ber theory to construct a sequence of uniformly distributed sets in the s dimensional unit cube G , where s ~ 2. Then we use the sequence to s reduce a difficult analytic problem to an arithmetic problem which may be calculated by computer. For example, we may use the arithmetic mean of the values of integrand in a given uniformly distributed set of G to ap s proximate the definite integral over G such that the principal order of the s error term is shown to be of the best possible kind, if the integrand satis fies certain conditions.
Publisher: Springer Science & Business Media
ISBN: 3642678297
Category : Mathematics
Languages : en
Pages : 252
Book Description
Owing to the developments and applications of computer science, ma thematicians began to take a serious interest in the applications of number theory to numerical analysis about twenty years ago. The progress achieved has been both important practically as well as satisfactory from the theoretical view point. It'or example, from the seventeenth century till now, a great deal of effort was made in developing methods for approximating single integrals and there were only a few works on multiple quadrature until the 1950's. But in the past twenty years, a number of new methods have been devised of which the number theoretic method is an effective one. The number theoretic method may be described as follows. We use num ber theory to construct a sequence of uniformly distributed sets in the s dimensional unit cube G , where s ~ 2. Then we use the sequence to s reduce a difficult analytic problem to an arithmetic problem which may be calculated by computer. For example, we may use the arithmetic mean of the values of integrand in a given uniformly distributed set of G to ap s proximate the definite integral over G such that the principal order of the s error term is shown to be of the best possible kind, if the integrand satis fies certain conditions.
Analytic Number Theory
Author: P. T. Bateman
Publisher: World Scientific
ISBN: 9789812560803
Category : Mathematics
Languages : en
Pages : 378
Book Description
This valuable book focuses on a collection of powerful methods of analysis that yield deep number-theoretical estimates. Particular attention is given to counting functions of prime numbers and multiplicative arithmetic functions. Both real variable (?elementary?) and complex variable (?analytic?) methods are employed. The reader is assumed to have knowledge of elementary number theory (abstract algebra will also do) and real and complex analysis. Specialized analytic techniques, including transform and Tauberian methods, are developed as needed.Comments and corrigenda for the book are found at http: //www.math.uiuc.edu/ diamond/
Publisher: World Scientific
ISBN: 9789812560803
Category : Mathematics
Languages : en
Pages : 378
Book Description
This valuable book focuses on a collection of powerful methods of analysis that yield deep number-theoretical estimates. Particular attention is given to counting functions of prime numbers and multiplicative arithmetic functions. Both real variable (?elementary?) and complex variable (?analytic?) methods are employed. The reader is assumed to have knowledge of elementary number theory (abstract algebra will also do) and real and complex analysis. Specialized analytic techniques, including transform and Tauberian methods, are developed as needed.Comments and corrigenda for the book are found at http: //www.math.uiuc.edu/ diamond/
Analytic Number Theory
Author: Henryk Iwaniec
Publisher: American Mathematical Soc.
ISBN: 1470467704
Category : Education
Languages : en
Pages : 632
Book Description
Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.
Publisher: American Mathematical Soc.
ISBN: 1470467704
Category : Education
Languages : en
Pages : 632
Book Description
Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.
Statistical Independence in Probability, Analysis, and Number Theory
Author: Mark Kac
Publisher: American Mathematical Soc.
ISBN: 0883850257
Category : Mathematics
Languages : en
Pages : 109
Book Description
Professor Kac's monograph is designed to illustrate how simple observations can be made the starting point of rich and fruitful theories and how the same theme recurs in seemingly unrelated disciplines. An elementary but thorough discussion of the game of "heads or tails," including the normal law and the laws of large numbers, is presented in a setting in which a variety of purely analytic results appear natural and inevitable. The chapter "Primes Play a Game of Chance" uses the same setting in dealing with problems of the distribution of values of arithmetic functions. The final chapter "From Kinetic Theory to Continued Fractions" deals with a spectacular application of the ergodic theorems to continued fractions. Mark Kac conveyed his infectious enthusiasm for mathematics and its applications in his lectures, papers, and books. Two of his papers won Chauvenet awards for expository excellence.
Publisher: American Mathematical Soc.
ISBN: 0883850257
Category : Mathematics
Languages : en
Pages : 109
Book Description
Professor Kac's monograph is designed to illustrate how simple observations can be made the starting point of rich and fruitful theories and how the same theme recurs in seemingly unrelated disciplines. An elementary but thorough discussion of the game of "heads or tails," including the normal law and the laws of large numbers, is presented in a setting in which a variety of purely analytic results appear natural and inevitable. The chapter "Primes Play a Game of Chance" uses the same setting in dealing with problems of the distribution of values of arithmetic functions. The final chapter "From Kinetic Theory to Continued Fractions" deals with a spectacular application of the ergodic theorems to continued fractions. Mark Kac conveyed his infectious enthusiasm for mathematics and its applications in his lectures, papers, and books. Two of his papers won Chauvenet awards for expository excellence.
Complex Analysis with Applications to Number Theory
Author: Tarlok Nath Shorey
Publisher: Springer Nature
ISBN: 9811590974
Category : Mathematics
Languages : en
Pages : 297
Book Description
The book discusses major topics in complex analysis with applications to number theory. This book is intended as a text for graduate students of mathematics and undergraduate students of engineering, as well as to researchers in complex analysis and number theory. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two and three manifolds and number theory. In additional to solved examples and problems, the book covers most of the topics of current interest, such as Cauchy theorems, Picard’s theorems, Riemann–Zeta function, Dirichlet theorem, gamma function and harmonic functions.
Publisher: Springer Nature
ISBN: 9811590974
Category : Mathematics
Languages : en
Pages : 297
Book Description
The book discusses major topics in complex analysis with applications to number theory. This book is intended as a text for graduate students of mathematics and undergraduate students of engineering, as well as to researchers in complex analysis and number theory. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two and three manifolds and number theory. In additional to solved examples and problems, the book covers most of the topics of current interest, such as Cauchy theorems, Picard’s theorems, Riemann–Zeta function, Dirichlet theorem, gamma function and harmonic functions.
Number Theory, Analysis and Geometry
Author: Dorian Goldfeld
Publisher: Springer Science & Business Media
ISBN: 1461412609
Category : Mathematics
Languages : en
Pages : 715
Book Description
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas of the field, namely Number Theory, Analysis, and Geometry, representing Lang’s own breadth of interest and impact. A special introduction by John Tate includes a brief and fascinating account of the Serge Lang’s life. This volume's group of 6 editors are also highly prominent mathematicians and were close to Serge Lang, both academically and personally. The volume is suitable to research mathematicians in the areas of Number Theory, Analysis, and Geometry.
Publisher: Springer Science & Business Media
ISBN: 1461412609
Category : Mathematics
Languages : en
Pages : 715
Book Description
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas of the field, namely Number Theory, Analysis, and Geometry, representing Lang’s own breadth of interest and impact. A special introduction by John Tate includes a brief and fascinating account of the Serge Lang’s life. This volume's group of 6 editors are also highly prominent mathematicians and were close to Serge Lang, both academically and personally. The volume is suitable to research mathematicians in the areas of Number Theory, Analysis, and Geometry.
Computational Excursions in Analysis and Number Theory
Author: Peter Borwein
Publisher: Springer Science & Business Media
ISBN: 0387216529
Category : Mathematics
Languages : en
Pages : 220
Book Description
This introduction to computational number theory is centered on a number of problems that live at the interface of analytic, computational and Diophantine number theory, and provides a diverse collection of techniques for solving number- theoretic problems. There are many exercises and open research problems included.
Publisher: Springer Science & Business Media
ISBN: 0387216529
Category : Mathematics
Languages : en
Pages : 220
Book Description
This introduction to computational number theory is centered on a number of problems that live at the interface of analytic, computational and Diophantine number theory, and provides a diverse collection of techniques for solving number- theoretic problems. There are many exercises and open research problems included.