Novel Gene Regulatory Mechanisms with Implications in Cancer

Novel Gene Regulatory Mechanisms with Implications in Cancer PDF Author: Amala Kaja
Publisher:
ISBN:
Category : Cancer
Languages : en
Pages : 0

Get Book Here

Book Description
Eukaryotic gene expression to proteins is a complex process that begins with transcription which is regulated by numerous regulatory factors and signals. Alterations in these regulatory factors that modulate gene expression are linked with a multitude of cellular pathologies including cancers. Thus, it is important to delineate these transcriptional regulatory mechanisms of gene expression. Therefore, a large number of studies have been aimed at understanding the mechanism of transcription at the level of initiation, elongation, and termination. In line with this, my dissertation work is focused towards elucidating novel regulatory mechanisms of transcription initiation and elongation. Our results illuminate genetically how TOR (target of rapamycin) signaling pathway regulates transcription initiation and hence, transcription, in response to nutrients. The process of transcription initiation at the promoter is followed by RNA polymerase II (Pol II) pausing at the promoter-proximal site for mRNA capping/quality control. Such promoter-proximal pausing of Pol II (paused Pol II) plays an important role in regulating transcription elongation. Our results unveil how paused Pol II is released to engage into productive elongation for mRNA synthesis. We show that the capping enzyme, Cet1, targets a transcription factor known as FACT (facilitates chromatin transcription) which subsequently recruits a transcription elongation factor, Paf1C (RNA polymerase II- associated factor 1 [Paf1] complex), to release the paused Pol II for productive transcription elongation for mRNA synthesis. During such transcription elongation, histones need to be evicted in front of Pol II and reassembled in the wake of Pol II, and this dynamic histone disassembly and reassembly are coordinated by a number of histone chaperones. The aforementioned transcription factor, FACT, is one such histone chaperone that plays a key role in histone reassembly during transcription elongation. Importantly, we find a new regulation of FACT, by the ubiquitin-proteasome system (UPS), and hence, histone dynamics at the coding sequence and transcription. Specifically, the Spt16 component of FACT is ubiquitinated by the E3 ubiquitin ligase San1, and subsequently degraded by the 26S proteasome in yeast. Such proteasomal regulation of Spt16 subunit of FACT regulates transcription, and impairment of this UPS regulation alters transcription, leading to cellular pathologies. Indeed, SPT16 has been found to be associated with a lot of cancers, and our results show that this proteasomal degradation of SPT16 is impaired in cancer cells. Further, upregulation of SPT16 is associated with alterations in transcription of genes linked to cancer. Subsequent to its synthesis, mRNA needs to be exported to cytoplasm for translation to proteins. Importantly, transcription elongation has been found to be coupled to mRNA export, and like elongation, mRNA export is also controlled by UPS. Our findings demonstrate the role of active transcription in the proteasomal degradation of a key mRNA export factor, Sub2, mediated via Mdm30 (an F-box protein), thus, enhancing our understanding of the UPS regulation of mRNA export. Taken together, my dissertation work elucidates novel regulatory mechanisms of gene expression in response to nutrients and UPS, with implications in cellular pathologies including cancers.

Novel Gene Regulatory Mechanisms with Implications in Cancer

Novel Gene Regulatory Mechanisms with Implications in Cancer PDF Author: Amala Kaja
Publisher:
ISBN:
Category : Cancer
Languages : en
Pages : 0

Get Book Here

Book Description
Eukaryotic gene expression to proteins is a complex process that begins with transcription which is regulated by numerous regulatory factors and signals. Alterations in these regulatory factors that modulate gene expression are linked with a multitude of cellular pathologies including cancers. Thus, it is important to delineate these transcriptional regulatory mechanisms of gene expression. Therefore, a large number of studies have been aimed at understanding the mechanism of transcription at the level of initiation, elongation, and termination. In line with this, my dissertation work is focused towards elucidating novel regulatory mechanisms of transcription initiation and elongation. Our results illuminate genetically how TOR (target of rapamycin) signaling pathway regulates transcription initiation and hence, transcription, in response to nutrients. The process of transcription initiation at the promoter is followed by RNA polymerase II (Pol II) pausing at the promoter-proximal site for mRNA capping/quality control. Such promoter-proximal pausing of Pol II (paused Pol II) plays an important role in regulating transcription elongation. Our results unveil how paused Pol II is released to engage into productive elongation for mRNA synthesis. We show that the capping enzyme, Cet1, targets a transcription factor known as FACT (facilitates chromatin transcription) which subsequently recruits a transcription elongation factor, Paf1C (RNA polymerase II- associated factor 1 [Paf1] complex), to release the paused Pol II for productive transcription elongation for mRNA synthesis. During such transcription elongation, histones need to be evicted in front of Pol II and reassembled in the wake of Pol II, and this dynamic histone disassembly and reassembly are coordinated by a number of histone chaperones. The aforementioned transcription factor, FACT, is one such histone chaperone that plays a key role in histone reassembly during transcription elongation. Importantly, we find a new regulation of FACT, by the ubiquitin-proteasome system (UPS), and hence, histone dynamics at the coding sequence and transcription. Specifically, the Spt16 component of FACT is ubiquitinated by the E3 ubiquitin ligase San1, and subsequently degraded by the 26S proteasome in yeast. Such proteasomal regulation of Spt16 subunit of FACT regulates transcription, and impairment of this UPS regulation alters transcription, leading to cellular pathologies. Indeed, SPT16 has been found to be associated with a lot of cancers, and our results show that this proteasomal degradation of SPT16 is impaired in cancer cells. Further, upregulation of SPT16 is associated with alterations in transcription of genes linked to cancer. Subsequent to its synthesis, mRNA needs to be exported to cytoplasm for translation to proteins. Importantly, transcription elongation has been found to be coupled to mRNA export, and like elongation, mRNA export is also controlled by UPS. Our findings demonstrate the role of active transcription in the proteasomal degradation of a key mRNA export factor, Sub2, mediated via Mdm30 (an F-box protein), thus, enhancing our understanding of the UPS regulation of mRNA export. Taken together, my dissertation work elucidates novel regulatory mechanisms of gene expression in response to nutrients and UPS, with implications in cellular pathologies including cancers.

RNA and Cancer

RNA and Cancer PDF Author: Jane Y. Wu
Publisher: Springer Science & Business Media
ISBN: 364231659X
Category : Medical
Languages : en
Pages : 256

Get Book Here

Book Description
Accumulating evidence supports the role of defects in post-transcriptional gene regulation in the development of cancer. RNA and Cancer examines the recent advances in our understanding of post-transcriptional gene regulation, especially RNA processing and its role in cancer development and treatment. A particular focus is mRNA splicing, but other topics such as microRNAs, mRNA stability, the perinucleolar compartment, and oligonucleotide therapeutics are also covered in detail. All chapters have been written by internationally renowned experts. The book is intended for all with an interest in gene regulation and cancer biology, and especially for those not directly working on RNA biology, including clinicians and medical students. It is hoped that it will stimulate further innovative research collaborations between RNA biologists and cancer researchers to the benefit of patients.

Epigenetic Mechanisms of Gene Regulation

Epigenetic Mechanisms of Gene Regulation PDF Author: Vincenzo E. A. Russo
Publisher:
ISBN:
Category : Medical
Languages : en
Pages : 716

Get Book Here

Book Description
Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.

Gene Regulation and Therapeutics for Cancer

Gene Regulation and Therapeutics for Cancer PDF Author: Surinder K. Batra
Publisher: CRC Press
ISBN: 1351778331
Category : Medical
Languages : en
Pages : 322

Get Book Here

Book Description
Differential gene regulation and targeted therapy are the critical aspects of several cancers. This book covers specific gene regulation and targeted therapies in different malignancies. It offers a comprehensive assessment of the transcriptional dysregulation in cancer, and considers some examples of transcriptional regulators as definitive oncogenic drivers in solid tumors, followed by a brief discussion of transcriptional effectors of the programs they drive, and discusses its specific targets. Most targeted therapeutics developed to date have been directed against a limited set of oncogenic drivers, exemplified by those encoding cell surface or cytoplasmic kinases that function in intracellular signaling cascades.

Molecular Biology of The Cell

Molecular Biology of The Cell PDF Author: Bruce Alberts
Publisher:
ISBN: 9780815332183
Category : Cytology
Languages : en
Pages : 0

Get Book Here

Book Description


Holland-Frei Cancer Medicine

Holland-Frei Cancer Medicine PDF Author: Robert C. Bast, Jr.
Publisher: John Wiley & Sons
ISBN: 111900084X
Category : Medical
Languages : en
Pages : 2004

Get Book Here

Book Description
Holland-Frei Cancer Medicine, Ninth Edition, offers a balanced view of the most current knowledge of cancer science and clinical oncology practice. This all-new edition is the consummate reference source for medical oncologists, radiation oncologists, internists, surgical oncologists, and others who treat cancer patients. A translational perspective throughout, integrating cancer biology with cancer management providing an in depth understanding of the disease An emphasis on multidisciplinary, research-driven patient care to improve outcomes and optimal use of all appropriate therapies Cutting-edge coverage of personalized cancer care, including molecular diagnostics and therapeutics Concise, readable, clinically relevant text with algorithms, guidelines and insight into the use of both conventional and novel drugs Includes free access to the Wiley Digital Edition providing search across the book, the full reference list with web links, illustrations and photographs, and post-publication updates

Cancer Biology: How Science Works

Cancer Biology: How Science Works PDF Author: Carsten Carlberg
Publisher: Springer Nature
ISBN: 3030756998
Category : Medical
Languages : en
Pages : 179

Get Book Here

Book Description
Cancer is a collection of diseases that can affect basically every organ of our body, all of which have in common uncontrolled cellular growth. The cells forming our body have the potential to grow in the context of wound healing or for the constant replacement of cells in our blood, skin or intestine. Behind every newly diagnosed malignant tumor in adulthood there is an individual history of probably 20 or more years of tumorigenesis. Therefore, malignant tumor formation often takes time making cancer in most cases to an aging-related disease that we seem not to be able to evade. However, tumorigenesis is dependent on multiple environmental influences, many of which we have under control by lifestyle decisions, such as retaining from smoking, selecting healthy food and being physically active. Thus, cancer preventive interventions are the most effective way to fight against cancer. This textbook wants not only to describe basic mechanisms leading to cancer but also to provide the readers with a more holistic view including cancer surveaillance mechanisms of the immune system. We will place these insights in the context of the personal consequences of everyone’s lifestyle decisions. The content of the book is linked to the lecture course in “Cancer Biology”, which is given by Prof. Carlberg since 2005 at the University of Eastern Finland in Kuopio. Moreover, biological processes explained in this book will be set into a clinical context using the experience of Dr. Velleuer in the daily care in oncology. This book also relates to the textbooks “Mechanisms of Gene Regulation: How Science Works” (ISBN 978-3-030-52321-3), “Human Epigenetics: How Science Works” (ISBN 978-3-030-22907-8) and “Nutrigenomics: How Science Works” (ISBN 978-3-030-36948-4), the studying of which may be interesting to readers who like to get more detailed information.

Eukaryotic Gene Regulation

Eukaryotic Gene Regulation PDF Author: Gerald M. Kolodny
Publisher: CRC Press
ISBN: 1351080385
Category : Medical
Languages : en
Pages : 190

Get Book Here

Book Description
The cause of cancer and its many manifestations is at present unknown. Since many of its manifestations, including is control of cell division, appear to represent abnormal patterns of gene expression, studies of the regulation of gene expression nwill provide important insights in the understanding and treatment of cancer. This volume attempts to present some of the recent work on regulation of gene expression in eukaryotic cells.

Integrative Omics for Discovering Novel Mechanisms of Ikaros' Gene Regulatory Functions in Leukemia

Integrative Omics for Discovering Novel Mechanisms of Ikaros' Gene Regulatory Functions in Leukemia PDF Author: Bo Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A hallmark of leukemia is uncontrolled proliferation of immature white blood cells, which can be caused by alteration of normal transcriptional pathways. The transcription factor (TF) Ikaros is well known as a master regulator of transcriptional programs during hematopoiesis. Malfunctions of Ikaros lead to malignant transformation, which suggests Ikaros also play an important role as a tumor suppressor. However, the detailed mechanisms of Ikaros gene regulatory functions and their implications in leukemogenesis are largely unknown. Great progress has been made in understanding mechanisms of gene regulation in the past decade, due to the development of next generation sequencing (NGS) technologies and through efforts such as Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomics. Now, omics data that profile genome-wide transcription factor occupancy, post-translational histone modifications, and chromatin organization have provided necessary information for understanding mechanisms underlying transcriptional regulation. Here, we use two case studies to show the power of integrative analysis of omics data for discovering novel mechanisms of Ikaros gene regulatory functions in leukemia. In the first example, by integrating epigenomics and transcriptomics time course data, we found that Ikaros exerts its gene regulatory functions in mouse T-cell acute lymphoblastic leukemia (ALL) via dynamic global regulation of the enhancer and super-enhancer landscapes. Additionally, our integrative analysis also uncovered Ikaros pioneering activity, which is a novel epigenetic regulatory function of Ikaros that can only be revealed through integration of chromatin landscape data with TF binding data at a genome-wide scale and at the right time point. In the second example, through integrative analysis, we explored Ikaros epigenetic regulatory functions in human acute myeloid leukemia (AML) after drug treatment. We demonstrated that a Casein Kinase II (CK2) inhibitor exerts its therapeutic effect in AML by enhancing Ikaros regulation of the enhancer and super-enhancer landscapes as well as chromatin accessibility. In this example, the benefits of using Ikaros-centric integrative analysis of omics data are two-fold: it not only provides an epigenetic landscape regulated by Ikaros in AML, but also predicts the changes of epigenetic landscape under the therapeutic effect of a potential drug. Taken together, these two studies report that Ikaros regulates the enhancer and super-enhancer landscapes, and chromatin accessibility involved in suppression of T-ALL and AML. The usage of two independent systems demonstrates that the newly discovered gene regulatory functions of Ikaros are neither cell line specific nor species specific. Another important take home message from our work is that the epigenetic gene regulatory functions of Ikaros can be restored through inhibition of CK2, which is a promising drug target. In summary, integrative omics analysis focusing on TF provides an opportunity to elucidate epigenetic mechanisms of gene regulation by integrating all layers of information under a coherent biological framework. The strategy demonstrated in this dissertation can be naturally extended to other epigenetic research delineating novel gene regulatory pathways involves in cancer. In addition, this strategy may further aid personalized medicine by providing insight in the design of targeted therapies or helping identifying novel prognostic markers.

Epigenetics in Human Disease

Epigenetics in Human Disease PDF Author: Trygve Tollefsbol
Publisher: Academic Press
ISBN: 0123884160
Category : Medical
Languages : en
Pages : 617

Get Book Here

Book Description
Epigenetics is one of the fastest growing fields of sciences, illuminating studies of human diseases by looking beyond genetic make-up and acknowledging that outside factors play a role in gene expression. The goal of this volume is to highlight those diseases or conditions for which we have advanced knowledge of epigenetic factors such as cancer, autoimmune disorders and aging as well as those that are yielding exciting breakthroughs in epigenetics such as diabetes, neurobiological disorders and cardiovascular disease. Where applicable, attempts are made to not only detail the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, but also novel epigenetic approaches to the treatment of these diseases. Chapters are also presented on human imprinting disorders, respiratory diseases, infectious diseases and gynecological and reproductive diseases. Since epigenetics plays a major role in the aging process, advances in the epigenetics of aging are highly relevant to many age-related human diseases. Therefore, this volume closes with chapters on aging epigenetics and breakthroughs that have been made to delay the aging process through epigenetic approaches. With its translational focus, this book will serve as valuable reference for both basic scientists and clinicians alike. Comprehensive coverage of fundamental and emergent science and clinical usage Side-by-side coverage of the basis of epigenetic diseases and their treatments Evaluation of recent epigenetic clinical breakthroughs