Author: Jiri Lebl
Publisher:
ISBN: 9781706230236
Category :
Languages : en
Pages : 468
Book Description
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Notes on Diffy Qs
Author: Jiri Lebl
Publisher:
ISBN: 9781706230236
Category :
Languages : en
Pages : 468
Book Description
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Publisher:
ISBN: 9781706230236
Category :
Languages : en
Pages : 468
Book Description
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Ordinary Differential Equations
Author: Morris Tenenbaum
Publisher: Courier Corporation
ISBN: 0486649407
Category : Mathematics
Languages : en
Pages : 852
Book Description
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Publisher: Courier Corporation
ISBN: 0486649407
Category : Mathematics
Languages : en
Pages : 852
Book Description
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Differential Equations
Author: George Finlay Simmons
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 465
Book Description
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 465
Book Description
A Second Course in Elementary Differential Equations
Author: Paul Waltman
Publisher: Elsevier
ISBN: 1483276600
Category : Mathematics
Languages : en
Pages : 272
Book Description
A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.
Publisher: Elsevier
ISBN: 1483276600
Category : Mathematics
Languages : en
Pages : 272
Book Description
A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.
Notes on Differential Equations
Author: Brian Hassard
Publisher:
ISBN: 9781086475210
Category :
Languages : en
Pages : 312
Book Description
Textbook for MTH 306 at University at Buffalo, State University of New York. This is a derivative work based on Jiri Lebl's Notes on Diffy Q's: Differential Equations for Engineers (available at https://www.jirka.org/diffyqs/), featuring additions by B. Hassard, J. Javor, J. Ringland, and A. Viraj. Chapters 4 and 5 of Lebl's original are omitted from this derivative work.
Publisher:
ISBN: 9781086475210
Category :
Languages : en
Pages : 312
Book Description
Textbook for MTH 306 at University at Buffalo, State University of New York. This is a derivative work based on Jiri Lebl's Notes on Diffy Q's: Differential Equations for Engineers (available at https://www.jirka.org/diffyqs/), featuring additions by B. Hassard, J. Javor, J. Ringland, and A. Viraj. Chapters 4 and 5 of Lebl's original are omitted from this derivative work.
Lecture Notes on Functional Analysis
Author: Alberto Bressan
Publisher: American Mathematical Soc.
ISBN: 0821887718
Category : Mathematics
Languages : en
Pages : 265
Book Description
This textbook is addressed to graduate students in mathematics or other disciplines who wish to understand the essential concepts of functional analysis and their applications to partial differential equations. The book is intentionally concise, presenting all the fundamental concepts and results but omitting the more specialized topics. Enough of the theory of Sobolev spaces and semigroups of linear operators is included as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs. Throughout the book, care has been taken to explain the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra. The main concepts and ideas used in the proofs are illustrated with a large number of figures. A rich collection of homework problems is included at the end of most chapters. The book is suitable as a text for a one-semester graduate course.
Publisher: American Mathematical Soc.
ISBN: 0821887718
Category : Mathematics
Languages : en
Pages : 265
Book Description
This textbook is addressed to graduate students in mathematics or other disciplines who wish to understand the essential concepts of functional analysis and their applications to partial differential equations. The book is intentionally concise, presenting all the fundamental concepts and results but omitting the more specialized topics. Enough of the theory of Sobolev spaces and semigroups of linear operators is included as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs. Throughout the book, care has been taken to explain the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra. The main concepts and ideas used in the proofs are illustrated with a large number of figures. A rich collection of homework problems is included at the end of most chapters. The book is suitable as a text for a one-semester graduate course.
Automated Solution of Differential Equations by the Finite Element Method
Author: Anders Logg
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723
Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723
Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Lectures on Partial Differential Equations
Author: I. G. Petrovsky
Publisher: Courier Corporation
ISBN: 0486155080
Category : Mathematics
Languages : en
Pages : 261
Book Description
Graduate-level exposition by noted Russian mathematician offers rigorous, readable coverage of classification of equations, hyperbolic equations, elliptic equations, and parabolic equations. Translated from the Russian by A. Shenitzer.
Publisher: Courier Corporation
ISBN: 0486155080
Category : Mathematics
Languages : en
Pages : 261
Book Description
Graduate-level exposition by noted Russian mathematician offers rigorous, readable coverage of classification of equations, hyperbolic equations, elliptic equations, and parabolic equations. Translated from the Russian by A. Shenitzer.
Lectures on Differential Equations
Author: Philip L. Korman
Publisher: American Mathematical Soc.
ISBN: 1470451735
Category : Mathematics
Languages : en
Pages : 414
Book Description
Lectures on Differential Equations provides a clear and concise presentation of differential equations for undergraduates and beginning graduate students. There is more than enough material here for a year-long course. In fact, the text developed from the author's notes for three courses: the undergraduate introduction to ordinary differential equations, the undergraduate course in Fourier analysis and partial differential equations, and a first graduate course in differential equations. The first four chapters cover the classical syllabus for the undergraduate ODE course leavened by a modern awareness of computing and qualitative methods. The next two chapters contain a well-developed exposition of linear and nonlinear systems with a similarly fresh approach. The final two chapters cover boundary value problems, Fourier analysis, and the elementary theory of PDEs. The author makes a concerted effort to use plain language and to always start from a simple example or application. The presentation should appeal to, and be readable by, students, especially students in engineering and science. Without being excessively theoretical, the book does address a number of unusual topics: Massera's theorem, Lyapunov's inequality, the isoperimetric inequality, numerical solutions of nonlinear boundary value problems, and more. There are also some new approaches to standard topics including a rethought presentation of series solutions and a nonstandard, but more intuitive, proof of the existence and uniqueness theorem. The collection of problems is especially rich and contains many very challenging exercises. Philip Korman is professor of mathematics at the University of Cincinnati. He is the author of over one hundred research articles in differential equations and the monograph Global Solution Curves for Semilinear Elliptic Equations. Korman has served on the editorial boards of Communications on Applied Nonlinear Analysis, Electronic Journal of Differential Equations, SIAM Review, an\ d Differential Equations and Applications.
Publisher: American Mathematical Soc.
ISBN: 1470451735
Category : Mathematics
Languages : en
Pages : 414
Book Description
Lectures on Differential Equations provides a clear and concise presentation of differential equations for undergraduates and beginning graduate students. There is more than enough material here for a year-long course. In fact, the text developed from the author's notes for three courses: the undergraduate introduction to ordinary differential equations, the undergraduate course in Fourier analysis and partial differential equations, and a first graduate course in differential equations. The first four chapters cover the classical syllabus for the undergraduate ODE course leavened by a modern awareness of computing and qualitative methods. The next two chapters contain a well-developed exposition of linear and nonlinear systems with a similarly fresh approach. The final two chapters cover boundary value problems, Fourier analysis, and the elementary theory of PDEs. The author makes a concerted effort to use plain language and to always start from a simple example or application. The presentation should appeal to, and be readable by, students, especially students in engineering and science. Without being excessively theoretical, the book does address a number of unusual topics: Massera's theorem, Lyapunov's inequality, the isoperimetric inequality, numerical solutions of nonlinear boundary value problems, and more. There are also some new approaches to standard topics including a rethought presentation of series solutions and a nonstandard, but more intuitive, proof of the existence and uniqueness theorem. The collection of problems is especially rich and contains many very challenging exercises. Philip Korman is professor of mathematics at the University of Cincinnati. He is the author of over one hundred research articles in differential equations and the monograph Global Solution Curves for Semilinear Elliptic Equations. Korman has served on the editorial boards of Communications on Applied Nonlinear Analysis, Electronic Journal of Differential Equations, SIAM Review, an\ d Differential Equations and Applications.
Lecture Notes on Ordinary Differential Equations
Author: P. K. Subramanian
Publisher:
ISBN: 9781974473014
Category : Differential equations
Languages : en
Pages : 258
Book Description
The aim of this book is to make the study of differential equations enjoyable. Many standard texts use only the method of undetermined coefficients. These methods, however, are laborious and painstaking. In this book we introduce the elegant and powerful operator methods; we use them early and consistently. The student is also exposed to the undetermined coefficients method so that he/she can choose the appropriate method in a given situation. In the same vein, we illustrate the use of Leibniz's theorem to easily find the coefficients when one uses power series methods. Many applications are included, such as determination of orthogonal trajectories, envelopes, discussion of predator-prey and interspecies competition problems. There are ample exercises with answers and hints for solutions where necessary. This book has been extensively class tested.
Publisher:
ISBN: 9781974473014
Category : Differential equations
Languages : en
Pages : 258
Book Description
The aim of this book is to make the study of differential equations enjoyable. Many standard texts use only the method of undetermined coefficients. These methods, however, are laborious and painstaking. In this book we introduce the elegant and powerful operator methods; we use them early and consistently. The student is also exposed to the undetermined coefficients method so that he/she can choose the appropriate method in a given situation. In the same vein, we illustrate the use of Leibniz's theorem to easily find the coefficients when one uses power series methods. Many applications are included, such as determination of orthogonal trajectories, envelopes, discussion of predator-prey and interspecies competition problems. There are ample exercises with answers and hints for solutions where necessary. This book has been extensively class tested.