Author: Kenderi, Gábor
Publisher: KIT Scientific Publishing
ISBN: 3731508346
Category : Identification
Languages : en
Pages : 240
Book Description
A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work.
Nonparametric identification of nonlinear dynamic systems
Author: Kenderi, Gábor
Publisher: KIT Scientific Publishing
ISBN: 3731508346
Category : Identification
Languages : en
Pages : 240
Book Description
A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work.
Publisher: KIT Scientific Publishing
ISBN: 3731508346
Category : Identification
Languages : en
Pages : 240
Book Description
A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work.
Nonparametric System Identification
Author: Wlodzimierz Greblicki
Publisher: Cambridge University Press
ISBN: 9781107410626
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Presenting a thorough overview of the theoretical foundations of non-parametric system identification for nonlinear block-oriented systems, this books shows that non-parametric regression can be successfully applied to system identification, and it highlights the achievements in doing so. With emphasis on Hammerstein, Wiener systems, and their multidimensional extensions, the authors show how to identify nonlinear subsystems and their characteristics when limited information exists. Algorithms using trigonometric, Legendre, Laguerre, and Hermite series are investigated, and the kernel algorithm, its semirecursive versions, and fully recursive modifications are covered. The theories of modern non-parametric regression, approximation, and orthogonal expansions, along with new approaches to system identification (including semiparametric identification), are provided. Detailed information about all tools used is provided in the appendices. This book is for researchers and practitioners in systems theory, signal processing, and communications and will appeal to researchers in fields like mechanics, economics, and biology, where experimental data are used to obtain models of systems.
Publisher: Cambridge University Press
ISBN: 9781107410626
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Presenting a thorough overview of the theoretical foundations of non-parametric system identification for nonlinear block-oriented systems, this books shows that non-parametric regression can be successfully applied to system identification, and it highlights the achievements in doing so. With emphasis on Hammerstein, Wiener systems, and their multidimensional extensions, the authors show how to identify nonlinear subsystems and their characteristics when limited information exists. Algorithms using trigonometric, Legendre, Laguerre, and Hermite series are investigated, and the kernel algorithm, its semirecursive versions, and fully recursive modifications are covered. The theories of modern non-parametric regression, approximation, and orthogonal expansions, along with new approaches to system identification (including semiparametric identification), are provided. Detailed information about all tools used is provided in the appendices. This book is for researchers and practitioners in systems theory, signal processing, and communications and will appeal to researchers in fields like mechanics, economics, and biology, where experimental data are used to obtain models of systems.
Topics in Nonlinear Dynamics, Volume 3
Author: D. Adams
Publisher: Springer Science & Business Media
ISBN: 146142416X
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Topics in Nonlinear Dynamics, Volume 3, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the third volume of six from the Conference, brings together 26 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Application of Nonlinearities: Aerospace Structures Nonlinear Dynamics Effects Under Shock Loading Application of Nonlinearities: Vibration Reduction Nonlinear Dynamics: Testing Nonlinear Dynamics: Simulation Nonlinear Dynamics: Identification Nonlinear Dynamics: Localization
Publisher: Springer Science & Business Media
ISBN: 146142416X
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Topics in Nonlinear Dynamics, Volume 3, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the third volume of six from the Conference, brings together 26 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Application of Nonlinearities: Aerospace Structures Nonlinear Dynamics Effects Under Shock Loading Application of Nonlinearities: Vibration Reduction Nonlinear Dynamics: Testing Nonlinear Dynamics: Simulation Nonlinear Dynamics: Identification Nonlinear Dynamics: Localization
Identification of Dynamic Systems
Author: Rolf Isermann
Publisher: Springer
ISBN: 9783642422676
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Publisher: Springer
ISBN: 9783642422676
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Generalized Homogeneity in Systems and Control
Author: Andrey Polyakov
Publisher: Springer Nature
ISBN: 3030384497
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
This monograph introduces the theory of generalized homogeneous systems governed by differential equations in both Euclidean (finite-dimensional) and Banach/Hilbert (infinite-dimensional) spaces. It develops methods of stability and robustness analysis, control design, state estimation and discretization of homogeneous control systems. Generalized Homogeneity in Systems and Control is structured in two parts. Part I discusses various models of control systems and related tools for their analysis, including Lyapunov functions. Part II deals with the analysis and design of homogeneous control systems. Some of the key features of the text include: mathematical models of dynamical systems in finite-dimensional and infinite-dimensional spaces; the theory of linear dilations in Banach spaces; homogeneous control and estimation; simple methods for an "upgrade" of existing linear control laws; numerical schemes for a consistent digital implementation of homogeneous algorithms; and experiments confirming an improvement of PID controllers. The advanced mathematical material will be of interest to researchers, mathematicians working in control theory and mathematically oriented control engineers.
Publisher: Springer Nature
ISBN: 3030384497
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
This monograph introduces the theory of generalized homogeneous systems governed by differential equations in both Euclidean (finite-dimensional) and Banach/Hilbert (infinite-dimensional) spaces. It develops methods of stability and robustness analysis, control design, state estimation and discretization of homogeneous control systems. Generalized Homogeneity in Systems and Control is structured in two parts. Part I discusses various models of control systems and related tools for their analysis, including Lyapunov functions. Part II deals with the analysis and design of homogeneous control systems. Some of the key features of the text include: mathematical models of dynamical systems in finite-dimensional and infinite-dimensional spaces; the theory of linear dilations in Banach spaces; homogeneous control and estimation; simple methods for an "upgrade" of existing linear control laws; numerical schemes for a consistent digital implementation of homogeneous algorithms; and experiments confirming an improvement of PID controllers. The advanced mathematical material will be of interest to researchers, mathematicians working in control theory and mathematically oriented control engineers.
Nonlinear Dynamics, Volume 1
Author: Gaetan Kerschen
Publisher: Springer
ISBN: 3319742809
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
Nonlinear Dynamics, Volume 1: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the first volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Nonlinear System Identification Nonlinear Modeling & Simulation Nonlinear Reduced-order Modeling Nonlinearity in PracticeNonlinearity in Aerospace Systems Nonlinearity in Multi-Physics Systems Nonlinear Modes and Modal Interactions Experimental Nonlinear Dynamics
Publisher: Springer
ISBN: 3319742809
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
Nonlinear Dynamics, Volume 1: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the first volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Nonlinear System Identification Nonlinear Modeling & Simulation Nonlinear Reduced-order Modeling Nonlinearity in PracticeNonlinearity in Aerospace Systems Nonlinearity in Multi-Physics Systems Nonlinear Modes and Modal Interactions Experimental Nonlinear Dynamics
Nonlinear System Identification
Author: Stephen A. Billings
Publisher: John Wiley & Sons
ISBN: 1118535553
Category : Technology & Engineering
Languages : en
Pages : 611
Book Description
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.
Publisher: John Wiley & Sons
ISBN: 1118535553
Category : Technology & Engineering
Languages : en
Pages : 611
Book Description
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.
Identification and System Parameter Estimation 1982
Author: G. A. Bekey
Publisher: Elsevier
ISBN: 1483165787
Category : Technology & Engineering
Languages : en
Pages : 869
Book Description
Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.
Publisher: Elsevier
ISBN: 1483165787
Category : Technology & Engineering
Languages : en
Pages : 869
Book Description
Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.
Road Map for Sliding Mode Control Design
Author: Vadim Utkin
Publisher: Springer Nature
ISBN: 3030417093
Category : Science
Languages : en
Pages : 134
Book Description
This book is devoted to control of finite and infinite dimensional processes with continuous-time and discrete time control, focusing on suppression problems and new methods of adaptation applicable for systems with sliding motions only. Special mathematical methods are needed for all the listed control tasks. These methods are addressed in the initial chapters, with coverage of the definition of the multidimensional sliding modes, the derivation of the differential equations of those motions, and the existence conditions. Subsequent chapters discusses various areas of further research. The book reflects the consensus view of the authors regarding the current status of SMC theory. It is addressed to a broad spectrum of engineers and theoreticians working in diverse areas of control theory and applications. It is well suited for use in graduate and postgraduate courses in such university programs as Electrical Engineering, Control of Nonlinear Systems, and Mechanical Engineering.
Publisher: Springer Nature
ISBN: 3030417093
Category : Science
Languages : en
Pages : 134
Book Description
This book is devoted to control of finite and infinite dimensional processes with continuous-time and discrete time control, focusing on suppression problems and new methods of adaptation applicable for systems with sliding motions only. Special mathematical methods are needed for all the listed control tasks. These methods are addressed in the initial chapters, with coverage of the definition of the multidimensional sliding modes, the derivation of the differential equations of those motions, and the existence conditions. Subsequent chapters discusses various areas of further research. The book reflects the consensus view of the authors regarding the current status of SMC theory. It is addressed to a broad spectrum of engineers and theoreticians working in diverse areas of control theory and applications. It is well suited for use in graduate and postgraduate courses in such university programs as Electrical Engineering, Control of Nonlinear Systems, and Mechanical Engineering.
Identification and Control
Author: Ricardo S. Sánchez-Peña
Publisher: Springer Science & Business Media
ISBN: 1846288991
Category : Science
Languages : en
Pages : 330
Book Description
This book meets head-on the difficulty of making practical use of new systems theory, presenting a selection of varied applications together with relevant theory. It shows how workable identification and control solutions can be derived by adapting and extrapolating from the theory. Each chapter has a common structure: a brief presentation of theory; the description of a particular application; experimental results; and a section highlighting, explaining and laying out solutions to the discrepancy between the theoretical and the practical.
Publisher: Springer Science & Business Media
ISBN: 1846288991
Category : Science
Languages : en
Pages : 330
Book Description
This book meets head-on the difficulty of making practical use of new systems theory, presenting a selection of varied applications together with relevant theory. It shows how workable identification and control solutions can be derived by adapting and extrapolating from the theory. Each chapter has a common structure: a brief presentation of theory; the description of a particular application; experimental results; and a section highlighting, explaining and laying out solutions to the discrepancy between the theoretical and the practical.