Nonparametric Analysis of Longitudinal Data in Factorial Experiments

Nonparametric Analysis of Longitudinal Data in Factorial Experiments PDF Author: Edgar Brunner
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
The authoritative reference on nonparametric methods for evaluating longitudinal data in factorial designs Broadening the range of techniques that can be used to evaluate longitudinal data, Nonparametric Analysis of Longitudinal Data in Factorial Experiments presents nonparametric methods of evaluation that supplement the generalized linear models approach. Emphasizing the practical application of these methods in statistical procedures, this book provides a unified approach for the analysis of factorial designs involving longitudinal data that is appropriate for metric data, count data, ordered categorical data, and dichotomous data. Topics covered include nonparametric models, effects and hypotheses in experimental design, estimators for relative effects, experiments for one and several groups of subjects, multifactorial experiments, dependent replications, and experiments with numerous time points. The basic mathematical principles for the methods introduced here are described in theory, consistent with the book's minimal math requirements. Simple approximations for small data sets are provided, as well as ample chapter exercises to test skills, an appendix that includes original data for the examples used throughout the book, and downloadable SAS-IML macros for implementing the more extensive calculations. All applications are designed to be useful in many fields. Generously supplemented with more than 110 graphs and tables, Nonparametric Analysis of Longitudinal Data in Factorial Experiments is an essential reference for statisticians and biometricians, researchers in clinical trials, psychological studies, and in the fields of forestry, agriculture, sociology, ecology, and biology, as well as graduate students in statistics and biostatistics.

Nonparametric Analysis of Longitudinal Data in Factorial Experiments

Nonparametric Analysis of Longitudinal Data in Factorial Experiments PDF Author: Edgar Brunner
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
The authoritative reference on nonparametric methods for evaluating longitudinal data in factorial designs Broadening the range of techniques that can be used to evaluate longitudinal data, Nonparametric Analysis of Longitudinal Data in Factorial Experiments presents nonparametric methods of evaluation that supplement the generalized linear models approach. Emphasizing the practical application of these methods in statistical procedures, this book provides a unified approach for the analysis of factorial designs involving longitudinal data that is appropriate for metric data, count data, ordered categorical data, and dichotomous data. Topics covered include nonparametric models, effects and hypotheses in experimental design, estimators for relative effects, experiments for one and several groups of subjects, multifactorial experiments, dependent replications, and experiments with numerous time points. The basic mathematical principles for the methods introduced here are described in theory, consistent with the book's minimal math requirements. Simple approximations for small data sets are provided, as well as ample chapter exercises to test skills, an appendix that includes original data for the examples used throughout the book, and downloadable SAS-IML macros for implementing the more extensive calculations. All applications are designed to be useful in many fields. Generously supplemented with more than 110 graphs and tables, Nonparametric Analysis of Longitudinal Data in Factorial Experiments is an essential reference for statisticians and biometricians, researchers in clinical trials, psychological studies, and in the fields of forestry, agriculture, sociology, ecology, and biology, as well as graduate students in statistics and biostatistics.

Latent Curve Models

Latent Curve Models PDF Author: Kenneth A. Bollen
Publisher: John Wiley & Sons
ISBN: 0471746088
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
An effective technique for data analysis in the social sciences The recent explosion in longitudinal data in the social sciences highlights the need for this timely publication. Latent Curve Models: A Structural Equation Perspective provides an effective technique to analyze latent curve models (LCMs). This type of data features random intercepts and slopes that permit each case in a sample to have a different trajectory over time. Furthermore, researchers can include variables to predict the parameters governing these trajectories. The authors synthesize a vast amount of research and findings and, at the same time, provide original results. The book analyzes LCMs from the perspective of structural equation models (SEMs) with latent variables. While the authors discuss simple regression-based procedures that are useful in the early stages of LCMs, most of the presentation uses SEMs as a driving tool. This cutting-edge work includes some of the authors' recent work on the autoregressive latent trajectory model, suggests new models for method factors in multiple indicators, discusses repeated latent variable models, and establishes the identification of a variety of LCMs. This text has been thoroughly class-tested and makes extensive use of pedagogical tools to aid readers in mastering and applying LCMs quickly and easily to their own data sets. Key features include: Chapter introductions and summaries that provide a quick overview of highlights Empirical examples provided throughout that allow readers to test their newly found knowledge and discover practical applications Conclusions at the end of each chapter that stress the essential points that readers need to understand for advancement to more sophisticated topics Extensive footnoting that points the way to the primary literature for more information on particular topics With its emphasis on modeling and the use of numerous examples, this is an excellent book for graduate courses in latent trajectory models as well as a supplemental text for courses in structural modeling. This book is an excellent aid and reference for researchers in quantitative social and behavioral sciences who need to analyze longitudinal data.

Univariate Discrete Distributions

Univariate Discrete Distributions PDF Author: Norman L. Johnson
Publisher: John Wiley & Sons
ISBN: 0471272469
Category : Mathematics
Languages : en
Pages : 690

Get Book Here

Book Description
This Set Contains: Continuous Multivariate Distributions, Volume 1, Models and Applications, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Continuous Univariate Distributions, Volume 1, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Continuous Univariate Distributions, Volume 2, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Discrete Multivariate Distributions by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Univariate Discrete Distributions, 3rd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson Discover the latest advances in discrete distributions theory The Third Edition of the critically acclaimed Univariate Discrete Distributions provides a self-contained, systematic treatment of the theory, derivation, and application of probability distributions for count data. Generalized zeta-function and q-series distributions have been added and are covered in detail. New families of distributions, including Lagrangian-type distributions, are integrated into this thoroughly revised and updated text. Additional applications of univariate discrete distributions are explored to demonstrate the flexibility of this powerful method. A thorough survey of recent statistical literature draws attention to many new distributions and results for the classical distributions. Approximately 450 new references along with several new sections are introduced to reflect the current literature and knowledge of discrete distributions. Beginning with mathematical, probability, and statistical fundamentals, the authors provide clear coverage of the key topics in the field, including: Families of discrete distributions Binomial distribution Poisson distribution Negative binomial distribution Hypergeometric distributions Logarithmic and Lagrangian distributions Mixture distributions Stopped-sum distributions Matching, occupancy, runs, and q-series distributions Parametric regression models and miscellanea Emphasis continues to be placed on the increasing relevance of Bayesian inference to discrete distribution, especially with regard to the binomial and Poisson distributions. New derivations of discrete distributions via stochastic processes and random walks are introduced without unnecessarily complex discussions of stochastic processes. Throughout the Third Edition, extensive information has been added to reflect the new role of computer-based applications. With its thorough coverage and balanced presentation of theory and application, this is an excellent and essential reference for statisticians and mathematicians.

Theory of Preliminary Test and Stein-Type Estimation with Applications

Theory of Preliminary Test and Stein-Type Estimation with Applications PDF Author: A. K. Md. Ehsanes Saleh
Publisher: John Wiley & Sons
ISBN: 0471773743
Category : Mathematics
Languages : en
Pages : 656

Get Book Here

Book Description
Theory of Preliminary Test and Stein-Type Estimation with Applications provides a com-prehensive account of the theory and methods of estimation in a variety of standard models used in applied statistical inference. It is an in-depth introduction to the estimation theory for graduate students, practitioners, and researchers in various fields, such as statistics, engineering, social sciences, and medical sciences. Coverage of the material is designed as a first step in improving the estimates before applying full Bayesian methodology, while problems at the end of each chapter enlarge the scope of the applications. This book contains clear and detailed coverage of basic terminology related to various topics, including: * Simple linear model; ANOVA; parallelism model; multiple regression model with non-stochastic and stochastic constraints; regression with autocorrelated errors; ridge regression; and multivariate and discrete data models * Normal, non-normal, and nonparametric theory of estimation * Bayes and empirical Bayes methods * R-estimation and U-statistics * Confidence set estimation

Variance Components

Variance Components PDF Author: Shayle R. Searle
Publisher: John Wiley & Sons
ISBN: 0470317698
Category : Mathematics
Languages : en
Pages : 537

Get Book Here

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.

Fundamentals of Queueing Theory

Fundamentals of Queueing Theory PDF Author: Donald Gross
Publisher: John Wiley & Sons
ISBN: 1118211642
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
Praise for the Third Edition "This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented." —IIE Transactions on Operations Engineering Thoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than presenting a narrow focus on the subject, this update illustrates the wide-reaching, fundamental concepts in queueing theory and its applications to diverse areas such as computer science, engineering, business, and operations research. This update takes a numerical approach to understanding and making probable estimations relating to queues, with a comprehensive outline of simple and more advanced queueing models. Newly featured topics of the Fourth Edition include: Retrial queues Approximations for queueing networks Numerical inversion of transforms Determining the appropriate number of servers to balance quality and cost of service Each chapter provides a self-contained presentation of key concepts and formulae, allowing readers to work with each section independently, while a summary table at the end of the book outlines the types of queues that have been discussed and their results. In addition, two new appendices have been added, discussing transforms and generating functions as well as the fundamentals of differential and difference equations. New examples are now included along with problems that incorporate QtsPlus software, which is freely available via the book's related Web site. With its accessible style and wealth of real-world examples, Fundamentals of Queueing Theory, Fourth Edition is an ideal book for courses on queueing theory at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners who analyze congestion in the fields of telecommunications, transportation, aviation, and management science.

Simulation and the Monte Carlo Method

Simulation and the Monte Carlo Method PDF Author: Reuven Y. Rubinstein
Publisher: John Wiley & Sons
ISBN: 1118210522
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.

Generalized, Linear, and Mixed Models

Generalized, Linear, and Mixed Models PDF Author: Charles E. McCulloch
Publisher: John Wiley & Sons
ISBN: 1118209966
Category : Social Science
Languages : en
Pages : 281

Get Book Here

Book Description
An accessible and self-contained introduction to statistical models-now in a modernized new edition Generalized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects. A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed models is maintained throughout, and each chapter illustrates how these models are applicable in a wide array of contexts. In addition, a discussion of general methods for the analysis of such models is presented with an emphasis on the method of maximum likelihood for the estimation of parameters. The authors also provide comprehensive coverage of the latest statistical models for correlated, non-normally distributed data. Thoroughly updated to reflect the latest developments in the field, the Second Edition features: A new chapter that covers omitted covariates, incorrect random effects distribution, correlation of covariates and random effects, and robust variance estimation A new chapter that treats shared random effects models, latent class models, and properties of models A revised chapter on longitudinal data, which now includes a discussion of generalized linear models, modern advances in longitudinal data analysis, and the use between and within covariate decompositions Expanded coverage of marginal versus conditional models Numerous new and updated examples With its accessible style and wealth of illustrative exercises, Generalized, Linear, and Mixed Models, Second Edition is an ideal book for courses on generalized linear and mixed models at the upper-undergraduate and beginning-graduate levels. It also serves as a valuable reference for applied statisticians, industrial practitioners, and researchers.

Basic Statistics

Basic Statistics PDF Author: Rand R. Wilcox
Publisher: Oxford University Press
ISBN: 0198043015
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
This introductory statistics textbook for non-statisticians covers basic principles, concepts, and methods routinely used in applied research. What sets this text apart is the incorporation of the many advances and insights from the last half century when explaining basic principles. These advances provide a foundation for vastly improving our ability to detect and describe differences among groups and associations among variables and provide a deeper and more accurate sense of when basic methods perform well and when they fail. Assuming no prior training, Wilcox introduces students to basic principles and concepts in a simple manner that makes these advances and insights, as well as standard ideas and methods, easy to understand and appreciate.

Understanding and Applying Basic Statistical Methods Using R

Understanding and Applying Basic Statistical Methods Using R PDF Author: Rand R. Wilcox
Publisher: John Wiley & Sons
ISBN: 1119061415
Category : Social Science
Languages : en
Pages : 531

Get Book Here

Book Description
Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.