Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics

Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics PDF Author: Stavros C. Farantos
Publisher: Springer
ISBN: 3319099884
Category : Science
Languages : en
Pages : 158

Get Book

Book Description
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.

Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics

Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics PDF Author: Stavros C. Farantos
Publisher: Springer
ISBN: 3319099884
Category : Science
Languages : en
Pages : 158

Get Book

Book Description
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.

Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics

Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics PDF Author: Stavros Farantos
Publisher: Springer
ISBN: 9783319099897
Category : Science
Languages : en
Pages : 158

Get Book

Book Description
This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.

Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics

Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics PDF Author: Peter Betsch
Publisher: Springer
ISBN: 3319318799
Category : Technology & Engineering
Languages : en
Pages : 291

Get Book

Book Description
This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application of structure-preserving methods is illustrated by a number of examples dealing with, among others, nonlinear beams and shells, large deformation problems, long-term simulations and coupled thermo-mechanical multibody systems. In addition it links novel time integration methods to frequently used methods in industrial multibody system simulation.

Molecular Dynamics

Molecular Dynamics PDF Author: Ben Leimkuhler
Publisher: Springer
ISBN: 3319163752
Category : Mathematics
Languages : en
Pages : 461

Get Book

Book Description
This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications. Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method.

Simulating Hamiltonian Dynamics

Simulating Hamiltonian Dynamics PDF Author: Benedict Leimkuhler
Publisher: Cambridge University Press
ISBN: 9780521772907
Category : Mathematics
Languages : en
Pages : 464

Get Book

Book Description
Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.

Nonlinear Mechanics

Nonlinear Mechanics PDF Author: Alexander L. Fetter
Publisher: Courier Corporation
ISBN: 048613699X
Category : Science
Languages : en
Pages : 162

Get Book

Book Description
In their prior Dover book, the authors provided a self-contained account of classical mechanics; this supplement/update offers a bridge to contemporary mechanics. Topics include nonlinear continuous systems. 2006 edition.

Classical Mechanics

Classical Mechanics PDF Author: Walter Greiner
Publisher: Springer Science & Business Media
ISBN: 9780387951287
Category : Science
Languages : en
Pages : 572

Get Book

Book Description
The series of texts on Classical Theoretical Physics is based on the highly successful series of courses given by Walter Greiner at the Johann Wolfgang Goethe University in Frankfurt am Main, Germany. Intended for advanced undergraduates and beginning graduate students, the volumes in the series provide not only a complete survey of classical theoretical physics but also a large number of worked examples and problems to show students clearly how to apply the abstract principles to realistic problems.

Simulating Hamiltonian Dynamics

Simulating Hamiltonian Dynamics PDF Author: B. Leimkuhler
Publisher:
ISBN: 9780511298004
Category : Hamiltonian systems
Languages : en
Pages : 379

Get Book

Book Description


Statistical Mechanics of Nonequilibrium Liquids

Statistical Mechanics of Nonequilibrium Liquids PDF Author: Denis J. Evans
Publisher: Elsevier
ISBN: 1483260453
Category : Science
Languages : en
Pages : 317

Get Book

Book Description
Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory, the isothermal linear response theory, as well as the equivalence of thermostatted linear responses. The book also describes how thermostatted linear mechanical response of many-body systems can be related to equilibrium fluctuations. The text explains the procedure for calculating the linear Navier-Stokes transport coefficients through computer simulation algorithms. The book also discusses the van Kampen objection to linear response theory, the steady-state fluctuations, and the thermodynamics of steady states. The text will prove valuable for researchers in molecular chemistry, scientists, and academicians involved in advanced physics.

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics PDF Author: Melvin G. Calkin
Publisher: World Scientific
ISBN: 9789810226725
Category : Science
Languages : en
Pages : 236

Get Book

Book Description
This book takes the student from the Newtonian mechanics typically taught in the first and the second year to the areas of recent research. The discussion of topics such as invariance, Hamiltonian-Jacobi theory, and action-angle variables is especially complete; the last includes a discussion of the Hannay angle, not found in other texts. The final chapter is an introduction to the dynamics of nonlinear nondissipative systems. Connections with other areas of physics which the student is likely to be studying at the same time, such as electromagnetism and quantum mechanics, are made where possible. There is thus a discussion of electromagnetic field momentum and mechanical?hidden? momentum in the quasi-static interaction of an electric charge and a magnet. This discussion, among other things explains the?(e/c)A? term in the canonical momentum of a charged particle in an electromagnetic field. There is also a brief introduction to path integrals and their connection with Hamilton's principle, and the relation between the Hamilton-Jacobi equation of mechanics, the eikonal equation of optics, and the Schr”dinger equation of quantum mechanics.The text contains 115 exercises. This text is suitable for a course in classical mechanics at the advanced undergraduate level.