Author: Michail Z. Kolovsky
Publisher: Springer Science & Business Media
ISBN: 3540491430
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
With progress in technology, the problem of protecting human-beings, ma chines and technological processes from !>Ources of vibration and impact has become of utmost importance. Traditional "classical" methods of pro tection, based upon utilising elastic passive and dissipative elements, turn out to be inefficient in many situations and can not completely satisfy the complex and often contradictory claims imposed on modern vibration protection systems which must provide high performance at minimum di mensions. For these reasons, active vibration protection systems, which are actually systems of automatic control with independent power sources, are widely used nowadays. Appearing and developing active systems require that traditional ap proaches to the analysis and synthesis of vibration protection systems must be revised. Firstly, there exists the necessity to re-state the problem of vi bration protection from mechanical actions as an equivalent problem in closed-loop control systems design, which is to be solved by the methods of control theory. Furthermore, it turns out that certain inherent proper ties of active systems must be taken into account for a proper design. In the majority of cases, the dynamic models of the objects to be protected and the bases to which these objects are to be attached must be revised. They are no longer considered as rigid bodies but elastic bodies with weak dissipation.
Nonlinear Dynamics of Active and Passive Systems of Vibration Protection
Author: Michail Z. Kolovsky
Publisher: Springer Science & Business Media
ISBN: 3540491430
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
With progress in technology, the problem of protecting human-beings, ma chines and technological processes from !>Ources of vibration and impact has become of utmost importance. Traditional "classical" methods of pro tection, based upon utilising elastic passive and dissipative elements, turn out to be inefficient in many situations and can not completely satisfy the complex and often contradictory claims imposed on modern vibration protection systems which must provide high performance at minimum di mensions. For these reasons, active vibration protection systems, which are actually systems of automatic control with independent power sources, are widely used nowadays. Appearing and developing active systems require that traditional ap proaches to the analysis and synthesis of vibration protection systems must be revised. Firstly, there exists the necessity to re-state the problem of vi bration protection from mechanical actions as an equivalent problem in closed-loop control systems design, which is to be solved by the methods of control theory. Furthermore, it turns out that certain inherent proper ties of active systems must be taken into account for a proper design. In the majority of cases, the dynamic models of the objects to be protected and the bases to which these objects are to be attached must be revised. They are no longer considered as rigid bodies but elastic bodies with weak dissipation.
Publisher: Springer Science & Business Media
ISBN: 3540491430
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
With progress in technology, the problem of protecting human-beings, ma chines and technological processes from !>Ources of vibration and impact has become of utmost importance. Traditional "classical" methods of pro tection, based upon utilising elastic passive and dissipative elements, turn out to be inefficient in many situations and can not completely satisfy the complex and often contradictory claims imposed on modern vibration protection systems which must provide high performance at minimum di mensions. For these reasons, active vibration protection systems, which are actually systems of automatic control with independent power sources, are widely used nowadays. Appearing and developing active systems require that traditional ap proaches to the analysis and synthesis of vibration protection systems must be revised. Firstly, there exists the necessity to re-state the problem of vi bration protection from mechanical actions as an equivalent problem in closed-loop control systems design, which is to be solved by the methods of control theory. Furthermore, it turns out that certain inherent proper ties of active systems must be taken into account for a proper design. In the majority of cases, the dynamic models of the objects to be protected and the bases to which these objects are to be attached must be revised. They are no longer considered as rigid bodies but elastic bodies with weak dissipation.
Nonlinear Vibration with Control
Author: David Wagg
Publisher: Springer
ISBN: 3319106449
Category : Technology & Engineering
Languages : en
Pages : 461
Book Description
This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader themes cut across these application areas: (i) vibration suppression – or active damping – and, (ii) adaptive structures and machines. In this expanded 2nd edition, revisions include: An additional section on passive vibration control, including nonlinear vibration mounts. A more in-depth description of semi-active control, including switching and continuous schemes for dampers and other semi-active systems. A complet e reworking of normal form analysis, which now includes new material on internal resonance, bifurcation of backbone curves and stability analysis of forced responses. Further analysis of the nonlinear dynamics of cables including internal resonance leading to whirling. Additional material on the vibration of systems with impact friction. The book is accessible to practitioners in the areas of application, as well as students and researchers working on related topics. In particular, the aim is to introduce the key concepts of nonlinear vibration to readers who have an understanding of linear vibration and/or linear control, but no specialist knowledge in nonlinear dynamics or nonlinear control.
Publisher: Springer
ISBN: 3319106449
Category : Technology & Engineering
Languages : en
Pages : 461
Book Description
This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader themes cut across these application areas: (i) vibration suppression – or active damping – and, (ii) adaptive structures and machines. In this expanded 2nd edition, revisions include: An additional section on passive vibration control, including nonlinear vibration mounts. A more in-depth description of semi-active control, including switching and continuous schemes for dampers and other semi-active systems. A complet e reworking of normal form analysis, which now includes new material on internal resonance, bifurcation of backbone curves and stability analysis of forced responses. Further analysis of the nonlinear dynamics of cables including internal resonance leading to whirling. Additional material on the vibration of systems with impact friction. The book is accessible to practitioners in the areas of application, as well as students and researchers working on related topics. In particular, the aim is to introduce the key concepts of nonlinear vibration to readers who have an understanding of linear vibration and/or linear control, but no specialist knowledge in nonlinear dynamics or nonlinear control.
Theory of Vibration Protection
Author: Igor A. Karnovsky
Publisher: Springer
ISBN: 3319280201
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans.“p> Numerous examples, which illustrate the theoretical ideas of each chapter, are included. This book is intended for graduate students and engineers. It is assumed that a reader has working knowledge of theory of vibrations, differential equations, andcomplex analysis. About the Authors. Igor A Karnovsky, Ph.D., Dr. Sci., is a specialist in structural analysis, theory of vibration and optimal control of vibration. He has 40 years of experience in research, teaching and consulting in this field, and is the author of more than 70 published scientific papers, including two books in Structural Analysis (published with Springer in 2010-2012) and three handbooks in Structural Dynamics (published with McGraw Hill in 2001-2004). He also holds a number of vibration-control-related patents. Evgeniy Lebed, Ph.D., is a specialist in applied mathematics and engineering. He has 10 years of experience in research, teaching and consulting in this field. The main sphere of his research interests are qualitative theory of differential equations, integral transforms and frequency-domain analysis with application to image and signal processing. He is the author of 15 published scientific papers and a US patent (2015).
Publisher: Springer
ISBN: 3319280201
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans.“p> Numerous examples, which illustrate the theoretical ideas of each chapter, are included. This book is intended for graduate students and engineers. It is assumed that a reader has working knowledge of theory of vibrations, differential equations, andcomplex analysis. About the Authors. Igor A Karnovsky, Ph.D., Dr. Sci., is a specialist in structural analysis, theory of vibration and optimal control of vibration. He has 40 years of experience in research, teaching and consulting in this field, and is the author of more than 70 published scientific papers, including two books in Structural Analysis (published with Springer in 2010-2012) and three handbooks in Structural Dynamics (published with McGraw Hill in 2001-2004). He also holds a number of vibration-control-related patents. Evgeniy Lebed, Ph.D., is a specialist in applied mathematics and engineering. He has 10 years of experience in research, teaching and consulting in this field. The main sphere of his research interests are qualitative theory of differential equations, integral transforms and frequency-domain analysis with application to image and signal processing. He is the author of 15 published scientific papers and a US patent (2015).
Active Vibration & Noise Control: Design Towards Performance Limit
Author: Jiqiang Wang
Publisher: Springer Nature
ISBN: 9811941165
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
The book is motivated by the pivotal issue: what is the performance limit of active control and energy harvesting? It aims to develop systematic design methodologies with a “visualization technique” where the performance limit can be readily determined solely based on visual inspections. Modern technological systems have evolved toward high speed, heavy load, lightweight, flexible operation and extreme conditions, as demonstrated in aerospace, marine, transportation and manufacturing industries. The associated vibration and noise issues have become such problematic that they may significantly confine the performance of the systems, to say the discomfort at least. Through the geometric representation of the performance specifications, fundamental issues such as (1) the existence of feasible controllers; (2) the optimality of controllers; (3) the performance limit of controllers; (4) compromisability among the performance specifications; (5) the synthesis of controllers; and (6) the influence of constraints on optimal solutions can all be resolved within the proposed framework. The state of the art is thus refined with a new approach complementary to those optimization-based routines, where extra effort would have to be exercised to disclose the compromisability of performance specifications. The proposed book will result in a new design methodology—performance limit-oriented active control. It was initiated by the author with the project “Active Control for Performance Limit” (ACPL). A series of fundamental results are obtained and will be disseminated in this book. The results are verified through extensive numerical demonstrations and are expected to provide useful guidance for practical engineering in the vibration and noise industry and research.
Publisher: Springer Nature
ISBN: 9811941165
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
The book is motivated by the pivotal issue: what is the performance limit of active control and energy harvesting? It aims to develop systematic design methodologies with a “visualization technique” where the performance limit can be readily determined solely based on visual inspections. Modern technological systems have evolved toward high speed, heavy load, lightweight, flexible operation and extreme conditions, as demonstrated in aerospace, marine, transportation and manufacturing industries. The associated vibration and noise issues have become such problematic that they may significantly confine the performance of the systems, to say the discomfort at least. Through the geometric representation of the performance specifications, fundamental issues such as (1) the existence of feasible controllers; (2) the optimality of controllers; (3) the performance limit of controllers; (4) compromisability among the performance specifications; (5) the synthesis of controllers; and (6) the influence of constraints on optimal solutions can all be resolved within the proposed framework. The state of the art is thus refined with a new approach complementary to those optimization-based routines, where extra effort would have to be exercised to disclose the compromisability of performance specifications. The proposed book will result in a new design methodology—performance limit-oriented active control. It was initiated by the author with the project “Active Control for Performance Limit” (ACPL). A series of fundamental results are obtained and will be disseminated in this book. The results are verified through extensive numerical demonstrations and are expected to provide useful guidance for practical engineering in the vibration and noise industry and research.
Dynamics and Control of Machines
Author: V.K. Astashev
Publisher: Springer Science & Business Media
ISBN: 3540696342
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Basic models and concepts of machine dynamics and motion control are presented in the order of the principal steps of machine design. The machine is treated as a coupled dynamical system, including drive, mechanisms and controller, to reveal its behavior at different regimes through the interaction of its units under dynamic and processing loads. The main dynamic effects in machines are explained. The influence of component compliances on accuracy, stability and efficiency of the machines is analyzed. Methods for decreasing internal and external vibration activity of machines are described. The dynamic features of digital control are considered. Special attention is given to machines with intense dynamic behavior: resonant and hand-held percussion ones. Targeted to engineers as well as to lecturers and advanced students.
Publisher: Springer Science & Business Media
ISBN: 3540696342
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Basic models and concepts of machine dynamics and motion control are presented in the order of the principal steps of machine design. The machine is treated as a coupled dynamical system, including drive, mechanisms and controller, to reveal its behavior at different regimes through the interaction of its units under dynamic and processing loads. The main dynamic effects in machines are explained. The influence of component compliances on accuracy, stability and efficiency of the machines is analyzed. Methods for decreasing internal and external vibration activity of machines are described. The dynamic features of digital control are considered. Special attention is given to machines with intense dynamic behavior: resonant and hand-held percussion ones. Targeted to engineers as well as to lecturers and advanced students.
Engineering Vibration Analysis
Author: Valery A. Svetlitsky
Publisher: Springer Science & Business Media
ISBN: 354040970X
Category : Science
Languages : en
Pages : 325
Book Description
Theory of vibrations belongs to principal subjects needed for training mechani cal engineers in technological universities. Therefore, the basic goal of the mono graph "Advanced Theory of Vibrations 1" is to help students studying vibration theory for gaining experience in application of this theory for solving particular problems. Thus, while choosing the problems and methods to solve them, the close attention was paid to the applied content of vibration theory. The monograph is devoted to systems with a single degree of freedom and sys tems with a finite number of degrees of freedom. In particular, problems are for mulated associated with determination of frequencies and forms of vibrations, study of forced vibrations, analysis of both stable and unstable vibrations (includ ing those caused by periodic but anharmonic forces). The problems of nonlinear vibrations and of vibration stability, and those related to seeking probabilistic characteristics for solutions to these problems in the case of random forces are also considered. Problems related to parametric vibrations and statistical dynamics of mechanical systems, as well as to determination of critical parameters and of dy namic stability are also analyzed. As a rule, problems presented in the monograph are associated with particular mechanical systems and can be applied for current studies in vibration theory. Al lowing for interests of students independently studying theory of vibrations, the majority of problems are supplied with either detailed solutions or algorithms of the solutions.
Publisher: Springer Science & Business Media
ISBN: 354040970X
Category : Science
Languages : en
Pages : 325
Book Description
Theory of vibrations belongs to principal subjects needed for training mechani cal engineers in technological universities. Therefore, the basic goal of the mono graph "Advanced Theory of Vibrations 1" is to help students studying vibration theory for gaining experience in application of this theory for solving particular problems. Thus, while choosing the problems and methods to solve them, the close attention was paid to the applied content of vibration theory. The monograph is devoted to systems with a single degree of freedom and sys tems with a finite number of degrees of freedom. In particular, problems are for mulated associated with determination of frequencies and forms of vibrations, study of forced vibrations, analysis of both stable and unstable vibrations (includ ing those caused by periodic but anharmonic forces). The problems of nonlinear vibrations and of vibration stability, and those related to seeking probabilistic characteristics for solutions to these problems in the case of random forces are also considered. Problems related to parametric vibrations and statistical dynamics of mechanical systems, as well as to determination of critical parameters and of dy namic stability are also analyzed. As a rule, problems presented in the monograph are associated with particular mechanical systems and can be applied for current studies in vibration theory. Al lowing for interests of students independently studying theory of vibrations, the majority of problems are supplied with either detailed solutions or algorithms of the solutions.
Contributions to Advanced Dynamics and Continuum Mechanics
Author: Holm Altenbach
Publisher: Springer
ISBN: 3030212513
Category : Science
Languages : en
Pages : 280
Book Description
The book celebrates the 65th birthday of Prof. Alexander K. Belyaev—a well-known expert in the field of Dynamics of Mechanical Systems. In addition to reflecting Prof. Belyaev’s contributions, the papers gathered here address a range of current problems in Dynamics and Continuum Mechanics. All contributions were prepared by his friends and colleagues, and chiefly focus on theory and applications.
Publisher: Springer
ISBN: 3030212513
Category : Science
Languages : en
Pages : 280
Book Description
The book celebrates the 65th birthday of Prof. Alexander K. Belyaev—a well-known expert in the field of Dynamics of Mechanical Systems. In addition to reflecting Prof. Belyaev’s contributions, the papers gathered here address a range of current problems in Dynamics and Continuum Mechanics. All contributions were prepared by his friends and colleagues, and chiefly focus on theory and applications.
Resonant Robotic Systems
Author: V. I. Babitsky
Publisher: Springer Science & Business Media
ISBN: 3540363807
Category : Technology & Engineering
Languages : en
Pages : 183
Book Description
Especially designed as self-sustaining oscillating systems, resonant robotic systems use the natural modes of oscillation of electromechanical modules for their movements. In fact, manipulator systems built on these principles demonstrate record-breaking characteristics in performance. The authors summarize the results and experience of research on, and development of, resonant robotic systems. For the readers convenience, a presentation of design concepts is followed by solutions to new dynamical and control problems. The book is intended for designers, researchers and graduate students.
Publisher: Springer Science & Business Media
ISBN: 3540363807
Category : Technology & Engineering
Languages : en
Pages : 183
Book Description
Especially designed as self-sustaining oscillating systems, resonant robotic systems use the natural modes of oscillation of electromechanical modules for their movements. In fact, manipulator systems built on these principles demonstrate record-breaking characteristics in performance. The authors summarize the results and experience of research on, and development of, resonant robotic systems. For the readers convenience, a presentation of design concepts is followed by solutions to new dynamical and control problems. The book is intended for designers, researchers and graduate students.
Advanced Theory of Mechanisms and Machines
Author: M.Z. Kolovsky
Publisher: Springer Science & Business Media
ISBN: 3540465162
Category : Science
Languages : en
Pages : 403
Book Description
A new approach to the theory of mechanisms and machines, based on a lecture course for mechanical engineering students at the St. Petersburg State Technical University. The material differs from traditional textbooks due to its more profound elaboration of the methods of structural, geometric, kinematic and dynamic analysis. These established and novel methods take into account the needs of modern machine design as well as the potential of computers.
Publisher: Springer Science & Business Media
ISBN: 3540465162
Category : Science
Languages : en
Pages : 403
Book Description
A new approach to the theory of mechanisms and machines, based on a lecture course for mechanical engineering students at the St. Petersburg State Technical University. The material differs from traditional textbooks due to its more profound elaboration of the methods of structural, geometric, kinematic and dynamic analysis. These established and novel methods take into account the needs of modern machine design as well as the potential of computers.
INTELLIGENCE FOR NONLINEAR DYNAMICS AND SYNCHRONISATION
Author: Abdelhamid Bouchachia
Publisher: Springer Science & Business Media
ISBN: 9491216309
Category : Computers
Languages : en
Pages : 313
Book Description
Over the past years, the appropriateness of Computational Intelligence (CI) techniques in modeling and optimization tasks pertaining to complex nonlinear dynamic systems has become indubitable, as attested by a large number of studies reporting on the successful application of CI models in nonlinear science (for example, adaptive control, signal processing, medical diagnostic, pattern formation, living systems, etc.). This volume summarizes the state-of-the-art of CI in the context of nonlinear dynamic systems and synchronization. Aiming at fostering new breakthroughs, the chapters in the book focus on theoretical, experimental and computational aspects of recent advances in nonlinear science intertwined with computational intelligence techniques. In addition, all the chapters have a tutorial-oriented structure.
Publisher: Springer Science & Business Media
ISBN: 9491216309
Category : Computers
Languages : en
Pages : 313
Book Description
Over the past years, the appropriateness of Computational Intelligence (CI) techniques in modeling and optimization tasks pertaining to complex nonlinear dynamic systems has become indubitable, as attested by a large number of studies reporting on the successful application of CI models in nonlinear science (for example, adaptive control, signal processing, medical diagnostic, pattern formation, living systems, etc.). This volume summarizes the state-of-the-art of CI in the context of nonlinear dynamic systems and synchronization. Aiming at fostering new breakthroughs, the chapters in the book focus on theoretical, experimental and computational aspects of recent advances in nonlinear science intertwined with computational intelligence techniques. In addition, all the chapters have a tutorial-oriented structure.