Nonimaging Optics in Solar Energy

Nonimaging Optics in Solar Energy PDF Author: Joseph O'Gallagher
Publisher: Morgan & Claypool Publishers
ISBN: 1598293311
Category : Technology & Engineering
Languages : en
Pages : 132

Get Book Here

Book Description
Nonimaging optics is a subdiscipline of optics whose development over the last 35–40 years was led by scientists from the University of Chicago and other cooperating individuals and institutions. The approach provides a formalism that allows the design of optical devices that approach the maximum physically attainable geometric concentration for a given set of optical tolerances. This means that it has the potential to revolutionize the design of solar concentrators. In this monograph, the basic practical applications of the techniques of nonimaging optics to solar energy collection and concentration are developed and explained. The formalism for designing a wide variety of concentrator types, such as the compound parabolic concentrator and its many embodiments and variations, is presented. Both advantages and limitations of the approach are reviewed. Practical and economic aspects of concentrator design for both thermal and photovoltaic applications are discussed as well. The whole range of concentrator applications from simple low-concentration nontracking designs to ultrahigh-concentration multistage configurations is covered. Table of Contents: Introduction / CPCs / Practical Design of CPC Thermal Collectors / Practical Design of CPC PV Concentrators / Two-Stage Nonimaging Concentrators for Solar Thermal Applications / Two-Stage Nonimaging Concentrators for Solar PV Applications / Selected Demonstrations of Nonimaging Concentrator Performance / The Importance of Economic Factors in Effective Solar Concentrator Design / Ultrahigh Concentration / Bibliography

Nonimaging Optics in Solar Energy

Nonimaging Optics in Solar Energy PDF Author: Joseph O'Gallagher
Publisher: Morgan & Claypool Publishers
ISBN: 1598293311
Category : Technology & Engineering
Languages : en
Pages : 132

Get Book Here

Book Description
Nonimaging optics is a subdiscipline of optics whose development over the last 35–40 years was led by scientists from the University of Chicago and other cooperating individuals and institutions. The approach provides a formalism that allows the design of optical devices that approach the maximum physically attainable geometric concentration for a given set of optical tolerances. This means that it has the potential to revolutionize the design of solar concentrators. In this monograph, the basic practical applications of the techniques of nonimaging optics to solar energy collection and concentration are developed and explained. The formalism for designing a wide variety of concentrator types, such as the compound parabolic concentrator and its many embodiments and variations, is presented. Both advantages and limitations of the approach are reviewed. Practical and economic aspects of concentrator design for both thermal and photovoltaic applications are discussed as well. The whole range of concentrator applications from simple low-concentration nontracking designs to ultrahigh-concentration multistage configurations is covered. Table of Contents: Introduction / CPCs / Practical Design of CPC Thermal Collectors / Practical Design of CPC PV Concentrators / Two-Stage Nonimaging Concentrators for Solar Thermal Applications / Two-Stage Nonimaging Concentrators for Solar PV Applications / Selected Demonstrations of Nonimaging Concentrator Performance / The Importance of Economic Factors in Effective Solar Concentrator Design / Ultrahigh Concentration / Bibliography

Nonimaging Optics

Nonimaging Optics PDF Author: Roland Winston
Publisher: Elsevier
ISBN: 0080479731
Category : Technology & Engineering
Languages : en
Pages : 511

Get Book Here

Book Description
From its inception nearly 30 years ago, the optical subdiscipline now referred to as nonimaging optics, has experienced dramatic growth. The term nonimaging optics is concerned with applications where imaging formation is not important but where effective and efficient collection , concentration, transport and distribution of light energy is - i.e. solar energy conversion, signal detection, illumination optics, measurement and testing. This book will incorporate the substantial developments of the past decade in this field.* Includes all substantial developments of the past decade in the rapidly moving field of nonimaging optics* The only authoritative reference on nonimaging optics, from the leader in the field

Nonimaging Optics in Solar Energy

Nonimaging Optics in Solar Energy PDF Author: Joseph O'Gallagher
Publisher: Springer Nature
ISBN: 3031794206
Category : Technology & Engineering
Languages : en
Pages : 119

Get Book Here

Book Description
Nonimaging optics is a subdiscipline of optics whose development over the last 35–40 years was led by scientists from the University of Chicago and other cooperating individuals and institutions. The approach provides a formalism that allows the design of optical devices that approach the maximum physically attainable geometric concentration for a given set of optical tolerances. This means that it has the potential to revolutionize the design of solar concentrators. In this monograph, the basic practical applications of the techniques of nonimaging optics to solar energy collection and concentration are developed and explained. The formalism for designing a wide variety of concentrator types, such as the compound parabolic concentrator and its many embodiments and variations, is presented. Both advantages and limitations of the approach are reviewed. Practical and economic aspects of concentrator design for both thermal and photovoltaic applications are discussed as well. The whole range of concentrator applications from simple low-concentration nontracking designs to ultrahigh-concentration multistage configurations is covered. Table of Contents: Introduction / CPCs / Practical Design of CPC Thermal Collectors / Practical Design of CPC PV Concentrators / Two-Stage Nonimaging Concentrators for Solar Thermal Applications / Two-Stage Nonimaging Concentrators for Solar PV Applications / Selected Demonstrations of Nonimaging Concentrator Performance / The Importance of Economic Factors in Effective Solar Concentrator Design / Ultrahigh Concentration / Bibliography

Nonimaging Fresnel Lenses

Nonimaging Fresnel Lenses PDF Author: Ralf Leutz
Publisher: Springer
ISBN: 3540452907
Category : Science
Languages : en
Pages : 279

Get Book Here

Book Description
A detailed and comprehensive account of the engineering of the world’s first nonimaging Fresnel lens solar concentrator. The book closes a gap in solar concentrator design, and describes nonimaging refractive optics and its numerical mathematics. The book shows the reader how to find his or her own optical solution using the rules and methodologies covering the design and the assessment of the nonimaging lens.

Nonimaging Optics

Nonimaging Optics PDF Author: Roland Winston
Publisher: CRC Press
ISBN: 1466589841
Category : Technology & Engineering
Languages : en
Pages : 217

Get Book Here

Book Description
This book provides a comprehensive look at the science, methods, designs, and limitations of nonimaging optics. It begins with an in-depth discussion on thermodynamically efficient optical designs and how they improve the performance and cost effectiveness of solar concentrating and illumination systems. It then moves into limits to concentration, imaging devices and their limitations, and the theory of furnaces and its applications to optical design. Numerous design methods are discussed in detail followed by chapters of estimating the performance of a nonimaging design and pushing their limits of concentration. Exercises and worked examples are included throughout.

High Collection Nonimaging Optics

High Collection Nonimaging Optics PDF Author: W.T. Welford
Publisher: Elsevier
ISBN: 0323157238
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
High Collection Nonimaging Optics covers the many developments and the wider range of applications of nonimaging optics. This book is organized into 11 chapters that emphasize the application of nonimaging optics to concentrators for solar energy. This text begins with discussions on the development of formalisms in nonimaging optics, specifically in the use of geometrical vector flux concept, which have led to entirely different concentrator designs. These topics are followed by a description of the so-called compound parabolic concentrator, the prototype of a series of nonimaging concentrators that approach very close to being ideal and having the maximum theoretical concentration ratio. The next chapters examine the concept of the flow line approach to nonimaging concentration; the geometrical optics model of nonimaging optics; and constructional tolerances and manufacturing methods for nonimaging optical components. A chapter highlights the applications of concentrator designs to solar energy concentrations. The last chapter surveys the applications of nonimaging optics to optical system design and to instrument design, with particular reference to utilization of light sources with maximum efficiency. This book will be of great benefit to nonimaging optics scientists and design engineers.

The Optics of Nonimaging Concentrators

The Optics of Nonimaging Concentrators PDF Author: W. T. Welford
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 234

Get Book Here

Book Description


Field Guide to Solar Optics

Field Guide to Solar Optics PDF Author: Julius E. Yellowhair
Publisher:
ISBN: 9781510636972
Category : Solar collectors
Languages : en
Pages :

Get Book Here

Book Description
"The Field Guide to Solar Optics attempts to consolidate and summarize optical topics in solar technologies and engineering that are dispersed throughout literature. The field guide also attempts to clarify topics and terms that could be confusing or at times misused. As with any technology area, optics related to solar technologies can be a wide field. The topics selected for this field guide are ones that are frequently encountered in solar engineering and research for energy harvesting, particularly for electricity generation. Therefore, the topics selected are slanted towards solar thermal or commonly called concentrating solar power. The first section of the field guide provides background on energy needs and usage and where solar technologies fit into the energy mix. The next section covers properties of the sun and develop understandings for solar energy collection. The third section introduces optical properties, concepts, and basic components. In the fourth section, the various optical systems used in solar engineering are described. In solar, optical systems used for solar energy collection is commonly referred to as collectors (e.g., collector field). This term is used frequently in this field guide. Another term commonly used for solar collectors is non-imaging optics. The next section introduces concepts for characterizing optical components/systems and analysis approaches. Lastly, measurement tools commonly used in solar engineering and research are described. The fundamentals of the topics are provided. Providing methods or approaches to designs was not the goal of the field guide. However, the fundamental understanding can be extended and used for design of components and systems"--

Solar Energy Conversion Systems

Solar Energy Conversion Systems PDF Author: Jeffrey R. S. Brownson
Publisher: Academic Press
ISBN: 0123973155
Category : Technology & Engineering
Languages : en
Pages : 471

Get Book Here

Book Description
Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners, and economists. Traditional texts in solar energy engineering have often emerged from mechanical or chemical engineering fields. Instead, Solar Energy Conversion Systems approaches solar energy conversion from the perspectives of integrative design, environmental technology, sustainability science, and materials science in the wake of amazing new thin films, polymers, and glasses developed by the optoelectronics and semiconductor industries. This is a new solar text for the new generation of green job designers and developers. It's highlighted with vignettes that break down solar conversion into useful stories and provides common points of reference, as well as techniques, for effective estimation of evolving technologies. - Contextualizes solar conversion for systems design and implementation in practical applications - Provides a complete understanding of solar power, from underlying science to essential economic outcomes - Analytical approach emphasizes systems simulations from measured irradiance and weather data rather than estimations from "rules of thumb" - Emphasizes integrative design and solar utility, where trans-disciplinary teams can develop sustainable solar solutions that increase client well-being and ecosystems services for a given locale

Illumination Engineering

Illumination Engineering PDF Author: R. John Koshel
Publisher: John Wiley & Sons
ISBN: 0470911409
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book Here

Book Description
This book brings together experts in the field who present material on a number of important and growing topics including lighting, displays, solar concentrators. The first chapter provides an overview of the field of nonimagin and illumination optics. Included in this chapter are terminology, units, definitions, and descriptions of the optical components used in illumination systems. The next two chapters provide material within the theoretical domain, including etendue, etendue squeezing, and the skew invariant. The remaining chapters focus on growing applications. This entire field of nonimaging optics is an evolving field, and the editor plans to update the technological progress every two to three years. The editor, John Koshel, is one of the most prominent leading experts in this field, and he is the right expert to perform the task.