Author: A. Katchalsky
Publisher:
ISBN: 9780674494114
Category :
Languages : en
Pages : 258
Book Description
Nonequilibrium Thermodynamics in Biophysics
Author: A. Katchalsky
Publisher:
ISBN: 9780674494114
Category :
Languages : en
Pages : 258
Book Description
Publisher:
ISBN: 9780674494114
Category :
Languages : en
Pages : 258
Book Description
Nonequilibrium Thermodynamics
Author: Yasar Demirel
Publisher: Newnes
ISBN: 0444595813
Category : Technology & Engineering
Languages : en
Pages : 787
Book Description
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]
Publisher: Newnes
ISBN: 0444595813
Category : Technology & Engineering
Languages : en
Pages : 787
Book Description
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]
Nonequilibrium Thermodynamics in Biophysics
Author: Aharon Katzir-Katchalsky
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 274
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 274
Book Description
Bioenergetics and Linear Nonequilibrium Thermodynamics
Author: S. Roy Caplan
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 456
Book Description
No description is available at this time.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 456
Book Description
No description is available at this time.
Statistical Thermodynamics of Nonequilibrium Processes
Author: Joel Keizer
Publisher: Springer Science & Business Media
ISBN: 1461210542
Category : Science
Languages : en
Pages : 517
Book Description
The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and limited in validity to a neighborhood of equilibrium. In recent years it has been possible to extend the statistical theory of nonequilibrium processes to include nonlinear effects. The modern theory, as expounded in this book, is applicable to a wide variety of systems both close to and far from equilibrium. The theory is based on the notion of elementary molecular processes, which manifest themselves as random changes in the extensive variables characterizing a system. The theory has a hierarchical character and, thus, can be applied at various levels of molecular detail.
Publisher: Springer Science & Business Media
ISBN: 1461210542
Category : Science
Languages : en
Pages : 517
Book Description
The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and limited in validity to a neighborhood of equilibrium. In recent years it has been possible to extend the statistical theory of nonequilibrium processes to include nonlinear effects. The modern theory, as expounded in this book, is applicable to a wide variety of systems both close to and far from equilibrium. The theory is based on the notion of elementary molecular processes, which manifest themselves as random changes in the extensive variables characterizing a system. The theory has a hierarchical character and, thus, can be applied at various levels of molecular detail.
Entropy and Free Energy in Structural Biology
Author: Hagai Meirovitch
Publisher: CRC Press
ISBN: 1000072304
Category : Computers
Languages : en
Pages : 397
Book Description
Computer simulation has become the main engine of development in statistical mechanics. In structural biology, computer simulation constitutes the main theoretical tool for structure determination of proteins and for calculation of the free energy of binding, which are important in drug design. Entropy and Free Energy in Structural Biology leads the reader to the simulation technology in a systematic way. The book, which is structured as a course, consists of four parts: Part I is a short course on probability theory emphasizing (1) the distinction between the notions of experimental probability, probability space, and the experimental probability on a computer, and (2) elaborating on the mathematical structure of product spaces. These concepts are essential for solving probability problems and devising simulation methods, in particular for calculating the entropy. Part II starts with a short review of classical thermodynamics from which a non-traditional derivation of statistical mechanics is devised. Theoretical aspects of statistical mechanics are reviewed extensively. Part III covers several topics in non-equilibrium thermodynamics and statistical mechanics close to equilibrium, such as Onsager relations, the two Fick's laws, and the Langevin and master equations. The Monte Carlo and molecular dynamics procedures are discussed as well. Part IV presents advanced simulation methods for polymers and protein systems, including techniques for conformational search and for calculating the potential of mean force and the chemical potential. Thermodynamic integration, methods for calculating the absolute entropy, and methodologies for calculating the absolute free energy of binding are evaluated. Enhanced by a number of solved problems and examples, this volume will be a valuable resource to advanced undergraduate and graduate students in chemistry, chemical engineering, biochemistry biophysics, pharmacology, and computational biology.
Publisher: CRC Press
ISBN: 1000072304
Category : Computers
Languages : en
Pages : 397
Book Description
Computer simulation has become the main engine of development in statistical mechanics. In structural biology, computer simulation constitutes the main theoretical tool for structure determination of proteins and for calculation of the free energy of binding, which are important in drug design. Entropy and Free Energy in Structural Biology leads the reader to the simulation technology in a systematic way. The book, which is structured as a course, consists of four parts: Part I is a short course on probability theory emphasizing (1) the distinction between the notions of experimental probability, probability space, and the experimental probability on a computer, and (2) elaborating on the mathematical structure of product spaces. These concepts are essential for solving probability problems and devising simulation methods, in particular for calculating the entropy. Part II starts with a short review of classical thermodynamics from which a non-traditional derivation of statistical mechanics is devised. Theoretical aspects of statistical mechanics are reviewed extensively. Part III covers several topics in non-equilibrium thermodynamics and statistical mechanics close to equilibrium, such as Onsager relations, the two Fick's laws, and the Langevin and master equations. The Monte Carlo and molecular dynamics procedures are discussed as well. Part IV presents advanced simulation methods for polymers and protein systems, including techniques for conformational search and for calculating the potential of mean force and the chemical potential. Thermodynamic integration, methods for calculating the absolute entropy, and methodologies for calculating the absolute free energy of binding are evaluated. Enhanced by a number of solved problems and examples, this volume will be a valuable resource to advanced undergraduate and graduate students in chemistry, chemical engineering, biochemistry biophysics, pharmacology, and computational biology.
Stochastic Thermodynamics
Author: Luca Peliti
Publisher: Princeton University Press
ISBN: 0691201773
Category : Mathematics
Languages : en
Pages : 272
Book Description
The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course
Publisher: Princeton University Press
ISBN: 0691201773
Category : Mathematics
Languages : en
Pages : 272
Book Description
The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course
Nonequilibrium Thermodynamics in Biophysics
Author: A. Katchalsky
Publisher:
ISBN:
Category : Biophysics
Languages : en
Pages : 248
Book Description
Publisher:
ISBN:
Category : Biophysics
Languages : en
Pages : 248
Book Description
Bioreaction Engineering Principles
Author: Jens Nielsen
Publisher: Springer
ISBN: 1461507677
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
This is the second edition of the text "Bioreaction Engineering Principles" by Jens Nielsen and John Villadsen, originally published in 1994 by Plenum Press (now part of Kluwer). Time runs fast in Biotechnology, and when Kluwer Plenum stopped reprinting the first edition and asked us to make a second, revised edition we happily accepted. A text on bioreactions written in the early 1990's will not reflect the enormous development of experimental as well as theoretical aspects of cellular reactions during the past decade. In the preface to the first edition we admitted to be newcomers in the field. One of us (JV) has had 10 more years of job training in biotechnology, and the younger author (IN) has now received international recognition for his work with the hottest topics of "modem" biotechnology. Furthermore we are happy to have induced Gunnar Liden, professor of chemical reaction engineering at our sister university in Lund, Sweden to join us as co-author of the second edition. His contribution, especially on the chemical engineering aspects of "real" bioreactors has been of the greatest value. Chapter 8 of the present edition is largely unchanged from the first edition. We wish to thank professor Martin Hjortso from LSU for his substantial help with this chapter.
Publisher: Springer
ISBN: 1461507677
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
This is the second edition of the text "Bioreaction Engineering Principles" by Jens Nielsen and John Villadsen, originally published in 1994 by Plenum Press (now part of Kluwer). Time runs fast in Biotechnology, and when Kluwer Plenum stopped reprinting the first edition and asked us to make a second, revised edition we happily accepted. A text on bioreactions written in the early 1990's will not reflect the enormous development of experimental as well as theoretical aspects of cellular reactions during the past decade. In the preface to the first edition we admitted to be newcomers in the field. One of us (JV) has had 10 more years of job training in biotechnology, and the younger author (IN) has now received international recognition for his work with the hottest topics of "modem" biotechnology. Furthermore we are happy to have induced Gunnar Liden, professor of chemical reaction engineering at our sister university in Lund, Sweden to join us as co-author of the second edition. His contribution, especially on the chemical engineering aspects of "real" bioreactors has been of the greatest value. Chapter 8 of the present edition is largely unchanged from the first edition. We wish to thank professor Martin Hjortso from LSU for his substantial help with this chapter.
Nonequilibrium Thermodynamics in Biophysics
Author: Aharon Katzir-Katchalsky
Publisher:
ISBN:
Category : Thermodynamics
Languages : en
Pages : 248
Book Description
Publisher:
ISBN:
Category : Thermodynamics
Languages : en
Pages : 248
Book Description